首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was found that alcohols can be synthesized from CO and H2 at 3 MPa and 280–300°C in the presence of Fe catalysts containing an activated fibrous carbon material (AFCM) as a support. It was established that 20% Fe/AFCM catalysts possess an extremely high specific activity in the conversion of carbon monoxide (∼1 × 10−4 mol CO (mol Fe)−1 s−1), which is higher than the activity of traditional bulk iron catalysts by almost an order of magnitude. The values of CO conversion and selectivity for alcohols obtained for these catalysts are close to the parameters of industrial processes (Synol process, Oxyl process, and synthesis according to Bashkirov); however, they are obtained under milder conditions in a single run rather than with the use of a recycle. The Fe/AFCM catalysts make it possible to obtain monohydric alcohols in yields to ∼50 g/m3 (to a 50% concentration in synthesis water) upon the almost complete conversion of CO. In this case, the fraction of C2-C4 alcohols was as high as 55–60%.  相似文献   

2.
The effects of the preimpregnation of reduced cobalt catalysts with liquid hydrocarbons on hydrocarbon synthesis from CO and H2 are considered. The preimpregnation of the catalysts shortens their reduction time. This effect is likely due to the fact that the impregnated catalyst sooner comes to a steady-state operating regime because of the enhanced mass transfer in the catalyst pellets during the process.  相似文献   

3.
The effect of promotion of Co catalysts with noble metals on their activity and selectivity in the synthesis of hydrocarbons from CO and H2 has been studied. Platinum at a content of (0.05–0.10)% has been found to be best promoter.  相似文献   

4.
The concept of “waste-to-wealth” is spreading awareness to prevent global warming and recycle the restrictive resources. To contribute towards sustainable development, hydrogen energy is obtained from syngas (CO and H2) generated from waste gasification, followed by CO oxidation and CO2 removal. In H2 generation, it is key to produce more purified H2 from syngas using heterogeneous catalysts. In this respect, we prepared Pt/Al2O3 catalyst with nanoporous structure using precipitation method, and compared its catalytic activity with commercial alumina (Degussa). Based on the results of XRD and TEM, it was found that metal particles did not aggregate on the alumina surface and showed high dispersion. Optimum condition for CO conversion was 1.5 wt% Pt loaded on Al2O3 support, and pure hydrogen was obtained after removal of CO2 gas.  相似文献   

5.
In this study, degradation aspects and kinetics of organics in a decontamination process were considered in the degradation experiments of advanced oxidation processes (AOP),i.e., UV, UV/H2O, and UV/H2O,/TiO2 systems. In the oxalic acid degradation with different H2O2 concentrations, it was found that oxalic acid was degraded with the first order reaction and the highest degradation rate was observed at 0.1 M of hydrogen peroxide. Degradation rate of oxalic acid was much higher than that of citric acid, irrespective of degradation methods, assuming that degradation aspects are related to chemical structures. Of methods, the TiO2 mediated photocatalysis showed the highest rate constant for oxalic acid and citric acid degradation. It was clearly showed that advanced oxidation processes were effective means to degrade recalcitrant organic compounds existing in a decontamination process.  相似文献   

6.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

7.
The effect of the nature of the support of a Co catalyst on the synthesis of hydrocarbons from CO, H2, and C2H4 was studied in this work. It was found that the introduction of ethylene into synthesis gas resulted in an increase in the yield of liquid hydrocarbons. In this case, the conversion of C2H4 was complete and the degree of its involvement into the synthesis of C5+ hydrocarbons depended on the concentration of this component in the starting mixture and the nature of the support. Specific features of the adsorption of CO and C2H4 on the used Co catalysts were determined using a temperature-programmed desorption method.  相似文献   

8.
A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
  相似文献   

9.
A detailed analysis of potential versus time measurements at galvanostatic charge/discharge conditions (external current change from −1 to +1 mA cm−2) for two La–Ni alloys in Ar-saturated 0.1 M KOH solution is presented. It is shown that passivation of the electrodes does not affect the potential jump as a result of current switching over. The value of potential jump allows to calculate the exchange current density for H2O/H2 system on the tested material. Anodic potential of the hydrogenated electrode (at i a = const) linearly increases with logarithm of time which allows to evaluate precisely time necessary for oxidation of hydrogen absorbed during cathodic charging. The method described enables to determine effectiveness of hydrogen absorption by materials applied for negative electrodes of NiMH batteries.  相似文献   

10.
The effect of pressure (0.5–2.5 MPa) on the synthesis of hydrocarbons from CO and H2 on Co-zeolite catalysts in a fixed-bed flow reactor was studied. It was found that productivity and selectivity for liquid hydrocarbons increased with pressure, whereas the selectivity of methane formation did not increase. The isoparaffin content of the products of catalysis was inversely proportional to the amount of heavy fractions in the products.  相似文献   

11.
A series of phosphotungstic acid (HPW)/SiO2 materials with hierarchical meso/macroporous structure were synthesized by evaporation-induced self-assembly method (EISA), using nonionic surfactant (P123) and polystyrene (PS) spheres as templates. SEM images displayed uniform macropores with an average pore size of 210 nm. TEM, small-angle XRD and N2 adsorption–desorption isotherms confirmed the existence of the ordered mesoporous structures, embedded in the wall of macropores. The wild-angle XRD and FT-IR spectra proved Keggin-type HPW dispersed homogeneously in the silica framework. With the amount of added PS spheres, the density of the macropores increased, the hierarchically ordered porous HPW/SiO2 possessed two-dimensional (2D) hexagonal (p6mm) mesostructures and uniform periodic macropores. The ODS catalytic activity of these samples were tested, the result showed that the meso/macroporous HPW/SiO2 catalyst with proper PS beads usage displayed much higher catalytic activity than other catalysts. In addition, the reusability of the meso/macroporous HPW/SiO2 catalyst was investigated, the activity of catalyst has not obviously decreased even after eight times.  相似文献   

12.
The results of experimental studies of synthesis of the hollandite phase K2Ga2Ti6O16 using initial mixtures of different dispersion compositions obtained by two methods, i.e., mechanical dispersion (MD) (followed by solid-phase sintering) and sol-gel method (Pechini method, MP), are reported. The catalytic properties of the obtained materials in the reactions of carbon monoxide (CO) and hydrogen (H2) oxidation have been determined. It has been demonstrated that an increase in the catalytic activity in the CO oxidation reaction is observed on the samples obtained using the sol-gel method, in which the hollandite phase content is higher and crystallization is more complete. The samples obtained using the MD method are characterized by a low porosity and activity in comparison with those produced by the Pechini method.  相似文献   

13.
A series of SBA-15 supported H3PMo12O40 catalysts were prepared for the one-step oxidation of methanol to dimethoxymethane (DMM). The evaluation and characterization revealed that higher DMM selectivity obtained on the incipient wetness impregnation (IM) catalyst was related to the instability of H3PMo12O40 on it. Raman spectra showed that 12-molybdophosphoric acid was more stable on the direct synthesis (DS) catalyst than on the IM catalyst and the existence of SBA-15 support enhanced the stability of H3PMo12O40. Moreover, higher H3PMo12O40 loading resulted in more acid sites and low DMM selectivity, furthermore the thermal pretreatment on H3PMo12O40 influenced its structure and thus affected DMM selectivity. This paper was presented at the 7 th Korea-China Workshop on Clean Energy Technology held at Taiyuan, China, June 26–28, 2008.  相似文献   

14.
The residual gas and remained raw gas in dual gas resources polygeneration system are quite complex in components (mainly CH4, CO, and H2), and these results to the distinguished differences in combustion reaction. Experimental investigations on basic combustion characteristics of syngas referred above are conducted on a laboratory-scale combustor with flame temperature and flue gas composition measured and analyzed. Primary air coefficient (PA), total air coefficient (TA), and components of the syngas (CS) are selected as key factors, and it is found that PA dominates mostly the ignition of syngas and NO x formation, while TA affects the flue gas temperature after high temperature region and NO x formation trend to be positive as H2/CO components increase. The results provide references for industrial utilization.  相似文献   

15.
Pt-(CdS/TiO2) film-typed photocatalysts are prepared with a doctor-blade method followed by a chemical bath deposition (CBD) process, and the films are characterized by UV-vis spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy. The film-typed structure is composed of photocatalysts and Pt metal part on a FTO substrate without additional electric device, so it is relatively simpler than the conventional photoelectrochemical cell. CdS quantum dots are introduced as a sensitizer for visible light response. Amounts of CdS quantum dots on TiO2 surface are increased with increasing CBD cycles, but they start to aggregate after certain CdS concentration due to oversaturation phenomenon. This high CdS content induces high electron losses, and therefore it reduces amounts of hydrogen production. As a result, there is a saturation point of CdS content at Cd/Ti ratio of 0.197, and the amounts of evolved hydrogen are 5.407 μmol/cm2·h at this photocatalyst formulation.  相似文献   

16.
17.
The electrochemical behavior of potassium ferrocyanide [K4Fe(CN)6] at Pt/ionic liquid (IL) microemulsion interfaces was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). H2O/TX-100/bmimPF6 was used to prepare three IL microemulsions: water in 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) (W/IL), bicontinuous (WIL) and bmimPF6 in water (IL/W). The results show that the IL microemulsion systems have relatively narrower potential windows compared with the pure IL system. The redox potential gap is about 100 mV in the pure water and the three IL microemulsions. The redox potentials of K4Fe(CN)6/K3Fe(CN)6 and the redox peak currents decrease in the order pure water, IL/W, WIL, W/IL. Furthermore, the peak currents increase linearly with the square root of the scan rate, while the diffusion coefficient increased in the order W/IL, WIL, IL/W. The Nyquist plots obtained in the WIL and IL/W systems show capacitive resistance arcs at high frequencies and 45° straight lines at low frequencies, implying that the electrochemical reactions are controlled by charge transfer and diffusion steps. For the W/IL system there is only a 45° straight line in the Nyquist plot, indicating that diffusion is the controlling step at all frequencies.  相似文献   

18.
TiO2 nanotubes promoted with Pt metal were prepared and tested to be the photocatalytic dehydrogenation catalyst in neat ethanol for producing H2 gas (C2H5OHC3CHO +H2). It was found that the ability to produce H2, the liquid phase product distribution and the catlyst stability of these promoted nano catalysts all depended on the Pt loading and catalyst preparation procedure. These Pt/TiO2 catalysts with TiO2 nanotubes washed with diluted H2SO4 solution produced 1, 2-diethoxy ethane (acetal) as the major liquid phase product, while over those washed with diluted HCl solution or H2O, acetaldehyde was the major liquid phase product.  相似文献   

19.
At temperatures lower than 250 °C the deactivation of zeolite NaX catalyst occurred in the presence of water vapor. The gradual accumulation of water vapor on the surface of catalyst could cause deactivation of catalyst. The zeolite NaX-WO3 catalysts were prepared to study a method preventing deactivation of catalysts from the adsorption of water vapor. The zeolite NaX-WO3 (9 : 1) with a low content of WO3 showed the highest conversion of H2S. It is believed that the addition of WO3 caused either a decrease of the strong adsorption of water vapor on the zeolite NaX or an increase of the reducibility of WO3 by some interactions between zeolite NaX and WO3. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

20.
Performance of CeO2-La2O3/ZSM-5 sorbents for sulfur removal was examined at temperature ranging from 500 oC to 700 oC. The sulfur capacity of 5Ce5La/ZSM-5 was much bigger than that of CeO2/ZSM-5. H2 had a negative impact on the sulfidation; however, CO had little influence on sulfur removal. The characterization results showed that CeO2 and La2O3 were well dispersed on ZSM-5 because of the intimate admixing of La2O3 and CeO2, the major sulfidation products were Ce2O2S and La2O2S, the XRD and SEM results revealed that ZSM-5 structure could remain intact during preparation and sulfidation process, the H2-TPR showed that the reducibility of CeO2 can be remarkably enhanced by addition of La.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号