首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of GaN boules by hydride vapor-phase epitaxy (HVPE) is very attractive for fabrication of GaN substrates. Use of dichlorosilane as a source for Si doping of bulk GaN is investigated. It is shown that no tensile strain is incorporated into mm-thick, Si-doped GaN layers on sapphire substrates if the threading dislocation density is previously reduced to 2.5 × 107 cm?2 or below. High-quality GaN layers with electron densities up to 1.5 × 1019 cm?3 have been achieved, and an upper limit of about 4 × 1019 cm?3 for Si doping of GaN boules was deduced considering the evolution of dislocations with thickness. A 2-inch, Si-doped GaN crystal with length exceeding 6 mm and targeted Si doping of about 1 × 1018 cm?3 is demonstrated.  相似文献   

2.
The properties of Si-doped GaN layers grown by molecular-beam epitaxy from ammonia are studied by photoluminescence spectroscopy. It is shown that the low-temperature photoluminescence is due to the recombination of excitons bound to donors at Si-atom concentrations below 1019 cm?3. At a Si-atom concentration of 1.6 × 1019 cm?3, the band of free excitons is dominant in the photoluminescence spectrum; in more heavily doped layers, the interband recombination band is dominant. A reduction in the binding energy of exciton-donor complexes with increasing doping level is observed. With the use of Haynes rule, whereby the binding energy of the complex in GaN is 0.2 of the donor ionization energy E D , it is shown that E D decreases with increasing Si concentration. This effect is described by the dependence {ie1134-1}, where E D otp is the ionization energy of an individual Si atom in GaN. The coefficient that describes a decrease in the depth of the impurity-band edge with increasing Si concentration is found to be α = 8.4 × 10?6 meV cm?1.  相似文献   

3.
Raman and infrared spectroscopy were applied to study nanocrystalline GaN films grown by chloride-hydride vapor-phase epitaxy on SiO2/Si(111) substrates at T=520°C. It was ascertained that GaN nanocrystals are formed on the oxidized silicon surface at a rate of 10?2 nm/s. It was shown that the peaks in the Raman spectra E2(high)=566 cm?1 and A1(LO)=730 cm?1 correspond to the elastically strained GaN wurtzite structure. It was detected that a peak related to E1(TO)=558 cm?1 arises in the infrared spectra, which shows that elastic stresses in the nanocrystals are insignificant.  相似文献   

4.
Pendeo-epitaxy (PE)1 from raised, [0001] oriented GaN stripes covered with silicon nitride masks has been employed for the growth of coalesced films of GaN(0001) with markedly reduced densities of line and planar defects on Si(111)-based substrates. Each substrate contained previously deposited 3C-SiC(111) and AlN(0001) transition layers and a GaN seed layer from which the stripes were etched. The 3C-SiC transition layer eliminated chemical reactions between the Si and the NH3 and the Ga metal from the decomposition of triethylgallium. The 3C-SiC and the GaN seed layers, each 0.5 μm thick, were also used to minimize the cracking and warping of the GaN/SiC/silicon assembly caused primarily by the stresses generated on cooling due to the mismatches in the coefficients of thermal expansion. Tilting in the coalesced GaN epilayers of 0.2° was confined to areas of lateral overgrowth over the masks; no tilting was observed in the material suspended above the trenches. The strong, low-temperature PL band-edge peak at 3.456 eV with a FWHM of 17 meV was comparable to that observed in PE GaN films grown on AlN/6H-SiC(0001) substrates.  相似文献   

5.
Hydrogenated silicon (Si:H) layers and Si:H/p-Si heterostructures were produced by multiple-energy (3–24 keV) high-dose (5×1016–3×1017 cm?2) hydrogen implantation into p-Si wafers. After implantation, current transport across the structures is controlled by the Poole-Frenkel mechanism, with the energy of the dominating emission center equal to E c ?0.89 eV. The maximum photosensitivity is observed for structures implanted with 3.2×1017 cm?2 of hydrogen and annealed in the temperature range of 250–300°C. The band gap of the Si:H layer E g ≈2.4 eV, and the dielectric constant ?≈3.2. The density of states near the Fermi level is (1–2)×1017 cm?3 eV?1.  相似文献   

6.
Spontaneous emission from selectively doped GaAs/InGaAs:Si and GaAs/InGaAsP:Si heterostructures is studied in the frequency range of ~3–3.5 THz for transitions between the states of the two-dimensional subband and donor center (Si) under the condition of excitation with a CO2 laser at liquid-helium temperature. It is shown that the population inversion and amplification in an active layer of 100–300 cm?1 in multilayered structures with quantum wells (50 periods) and a concentration of doping centers N D ≈ 1011 cm?2 can be attained under the excitation-flux density 1023 photons/(cm2 s).  相似文献   

7.
The structural, electrical, and optical properties of GaN grown on 6H-SiC(0001) substrates by molecular beam epitaxy are studied. Suitable substrate preparation and growth conditions are found to greatly improve the structural quality of the films. Threading dislocation densities of about 3×109 cm−2 for edge dislocations and <1×106 cm−2 for screw dislocations are achieved in GaN films of 0.8 μm thickness. Mechanisms of dislocation generation and annihilation are discussed. Increasing the Ga to N flux ratio used during growth is found to improve the surface morphology. An unintentional electron concentration in the films of about 5×1017 cm−3 is observed, and is attributed to excess Si in the films due to a Si-cleaning step used in the substrate preparation. Results from optical characterization are correlated with the structural and electronic studies.  相似文献   

8.
Mg- and Si-doped GaN and AlGaN films were grown by metalorganic chemical vapor deposition and characterized by room-temperature photoluminescence and Hall-effect measurements. We show that the p-type carrier concentration resulting from Mg incorporation in GaN:Mg films exhibits a nonlinear dependence both on growth temperature and growth pressure. For GaN and AlGaN, n-type doping due to Si incorporation was found to be a linear function of the silane molar flow. Mg-doped GaN layers with 300K hole concentrations p ∼2×1018 cm−3 and Si-doped GaN films with electron concentrations n∼1×1019 cm−3 have been grown. N-type Al0.10Ga0.90N:Si films with resistivities as low as p ∼6.6×10−3 Ω-cm have been measured.  相似文献   

9.
High-resolution x-ray diffraction patterns and 90 K microcathodoluminescence (MCL) spectra were taken for undoped, symmetric AlGaN/GaN superlattices (SLs) with GaN quantum-well (QW) widths of 35 Å and 80 Å. The short-period SL spectra were blue shifted by about 60 meV compared to the GaN substrate, and the magnitude of the blue shift was increased by about 20 meV by application of a reverse bias of ?3 V (electric field of about 4 · 105 V/cm) to a Schottky diode prepared on this SL. A small red shift of about 40 meV compared to GaN was observed for the long-period SL. The two latter observations were interpreted as manifestations of the presence of a strong built-in piezoelectric field, giving rise to the quantum-confined Stark effect (QCSE). Partial disordering of the short-period SL was observed after Ar ion implantation (energy 150 keV, dose 8·1013 cm?2 and 80 keV, 2·1013 cm?2) and subsequent annealing at 1000°C for 3 h under the protective layer of Si3N4. However, it was observed that this partial disordering was accompanied by strain relaxation via formation of misfit dislocations or cracks.  相似文献   

10.
Silicon-doped GaN layers grown by low-pressure metalorganic vapor-phase epitaxy with Si concentrations ranging from 2 × 1017 Si/cm3 to 9.2 × 1018 Si/cm3 were investigated by means of the perturbed angular correlation (PAC) technique applied to implanted 111In(Cd). An undoped GaN film is used as a reference. The Si atoms replace Ga atoms in the lattice, and silicon, being a group IV element, acts as a donor on the Ga site and contributes one extra electron to the conduction band. Hall-effect measurements confirmed that the free charge carrier density is essentially increased and of the order of the silicon concentration. PAC investigations of the annealing behavior after implantation of the 111In probes show that best recovery is achieved after annealing at 1200 K and that high silicon concentrations make GaN films more stable at high temperatures. Further, it was found that the temperature dependence of the electric field gradient is reduced by increasing Si concentrations.  相似文献   

11.
The influence of diluent gas on the metalorganic vapor phase epitaxy of AlN and GaN thin films has been investigated. A computational fluid dynamics model using the finite element method was employed to improve film uniformity and to analyze transport phenomena. The properties of AlN and GaN thin films grown on α(6H)-SiC(0001) substrates in H2 and N2 diluent gas environments were evaluated. Thin films of AlN grown in H2 and N2 had root mean square (rms) roughness values of 1.5 and 1.8 nm, respectively. The surface and defect microstructures of the GaN thin films, observed by scanning and transmission electron microscopy, respectively, were very similar for both diluents. Low temperature (12K) photoluminescence measurements of GaN films grown in N2 had peak intensities and full widths at half maximum equal to or better than those films grown in H2. A room temperature Hall mobility of 275 cm2/V·s was measured on 1 μm thick, Si-doped, n-type (1×1017 cm−3) GaN films grown in N2. Acceptor-type behavior of Mg-doped GaN films deposited in N2 was repeatably obtained without post-growth annealing, in contrast to similar films grown in H2. The GaN growth rates were ∼30% higher when H2 was used as the diluent. The measured differences in the growth rates of AlN and GaN films in H2 and N2 was attributed to the different transport properties of these mixtures, and agreed well with the computer model predictions. Nitrogen is shown to be a feasible alternative diluent to hydrogen for the growth of AlN and GaN thin films.  相似文献   

12.
An ultrathin SiO2 interfacial buffer layer is formed using the nitric acid oxidation of Si (NAOS) method to improve the interface and electrical properties of Al2O3/Si, and its effect on the leakage current and interfacial states is analyzed. The leakage current density of the Al2O3/Si sample (8.1 × 10?9 A cm?2) due to the formation of low‐density SiOx layer during the atomic layer deposition (ALD) process, decreases by approximately two orders of magnitude when SiO2 buffer layer is inserted using the NAOS method (1.1 × 10?11 A cm?2), and further decreases after post‐metallization annealing (PMA) (1.4 × 10?12 A cm?2). Based on these results, the influence of interfacial defect states is analyzed. The equilibrium density of defect sites (Nd) and fixed charge density (Nf) are both reduced after NAOS and then further decreased by PMA treatment. The interface state density (Dit) at 0.11 eV decreases about one order of magnitude from 2.5 × 1012 to 7.3 × 1011 atoms eV?1 cm?2 after NAOS, and to 3.0 × 1010 atoms eV?1 cm?2 after PMA. Consequently, it is demonstrated that the high defect density of the Al2O3/Si interface is drastically reduced by fabricating ultrathin high density SiO2 buffer layer, and the insulating properties are improved.  相似文献   

13.
MOCVD-grown heterostructures with one or several InxGa1?x N layers in a GaN matrix have been studied by transmission electron microscopy. In heterostructures with thick InGaN layers, a noncoherent system of domains with lateral dimensions (~50 nm) on the order of the layer thickness (~40 nm) is formed. In the case of ultrathin InGaN inclusions, nanodomains coherent with the GaN matrix are formed. The content of indium in nanodomains, determined by the DALI method, is as high as x≈0.6 or more, substantially exceeding the average In concentration. The density of the nanodomains formed in the structures studied is n≈(2–5)×1011 cm?2. In the structures with ultrathin InGaN inclusions, two characteristic nanodomain sizes are observed (3–6 and 8–15 nm).  相似文献   

14.
The distribution of charged centers N(w), quantum efficiency, and electroluminescence spectra of blue and green light-emitting diodes (LED) based on InGaN/AlGaN/GaN p-n heterostructures were investigated. Multiple InGaN/GaN quantum wells (QW) were modulation-doped with Si donors in GaN barriers. Acceptor and donor concentrations near the p-n junction were determined by the heterodyne method of dynamic capacitance to be about N A ≥ 1 × 1019 cm?3 ? N D ≥ 1 × 1018 cm?3. The N(w) functions exhibited maxima and minima with a period of 11–18 (±2–3 nm) nm. The energy diagram of the structures has been constructed. The shifts of spectral peaks with variation of current (J=10?6–3×10?2 A) are smaller (13–12 meV for blue and 20–50 meV for green LEDs) than the corresponding values for the diodes with undoped barriers (up to 150 meV). This effect is due to the screening of piezoelectric fields in QWs by electrons. The dependence of quantum efficiency on current correlates with the charge distribution and specific features in the current-voltage characteristics.  相似文献   

15.
The effective mobility of electrons μ* in the inversion n-type channel of a field-effect transistor increases appreciably (as a result of space-charge ion polarization of the gate oxide) from the typical values of ?820 cm2 V?1 s?1 to the values of ?2645 cm2 V?1 s?1, which exceed the electron mobility in bulk silicon. After polarization, the sheet concentration of Na+ ions at the SiO2/Si interface exceeds 6 × 1013 cm?2. The ions are almost completely neutralized by electrons in the inversion channel. As temperature T is decreased in the range from 293 to 203 K, μ* increases according to the law μ* ∝ T ?0.82. Apparently, the observed dependence μ*(T) is caused by the combined scattering of electrons by roughness of the Si/SiO2 interface surface, phonons, and the interface states. Depolarization of the oxide reverts μ* to the initial value. Anomalously large values of μ* are assumed to be either a consequence of the origination of pronounced structural stresses in the surface Si layer due to the oxide polarization or a result of a phase reconstruction of the inversion-channel region due to hybridization of the wave functions of electrons localized at the Na+ ions with the wave functions of electrons in the inversion channel.  相似文献   

16.
采用条形Al掩模在Si(111)衬底上进行了GaN薄膜侧向外延的研究.结果显示,当掩模条垂直于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN无法通过侧向生长合并得到表面平整的薄膜;当掩模条平行于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN侧向外延速度较快,有利于合并得到平整的薄膜.同时,研究表明,升高温度和降低生长气压都有利于侧向生长.通过优化生长工艺,在条形Al掩模Si(111)衬底上得到了连续完整的GaN薄膜.原子力显微镜测试显示,窗口区域生长的GaN薄膜位错密度约为1×109/cm2,而侧向生长的GaN薄膜位错密度降低到了5×107/cm2以下.  相似文献   

17.
Ion implantation into III–V nitride materials is animportant technology for high-power and high-temperature digital and monolithic microwave integrated circuits. We report the results of the electrical, optical, and surface morphology of Si ion-implanted GaN films using furnace annealing. We demonstrate high sheet-carrier densities for relatively low-dose (natoms=5×1014 cm−2) Si implants into AlN/GaN/sapphire heteroepitaxial films. The samples that were annealed at 1150°C in N2 for 5 min exhibited a smooth surface morphology and a sheet electron concentration ns ∼9.0×1013 cm−2, corresponding to an estimated 19% electrical activation and a 38% Si donor activation in GaN films grown on sapphire substrates. Variable-temperature Hall-effect measurem entsindicate a Si donor ionization energy ∼15 meV.  相似文献   

18.
We have investigated the n-dopant distribution in the overgrown and window regions of lateral-epitaxial overgrown GaN/sapphire (0001) using room-temperature micro-Raman spectroscopy in the backscattering configuration. From a fit to the high energy-coupled longitudinal optical (LO) phonon-plasmon mode (LPP+), we have evaluated n ≈ (6.5±0.6) × 1017 cm−3 in the overgrown region; a value considerably higher than that previously reported by Pophristic et al.5 The spectrum from the window region was harder to interpret because of the considerable overlap of the A1(LO) mode and Eg (750 cm−1) sapphire line with the LPP+ trace. The implications of our findings for the overgrown region on the measured thermal conductivity as well as other parameters will be discussed.  相似文献   

19.
SiC semiconductor-on-insulator (SOI) structures have been investigated as substrates for the growth of GaN films. The SiC SOI was obtained through the conversion of Si SOI wafers by reaction with propane and H2. (111) SiC SOI have been produced by this carbonization process at temperatures ranging from 1200 to 1300°C. X-ray diffraction (XRD) and infrared spectroscopy (FTIR) are used to chart the conversion of the Si layer to SiC. Under our conditions, growth time of 3 min at 1250°C is sufficient to completely convert a 1000? layer. XRD of the SiC SOI reveals a single SiC peak at 2θ = 35.7° corresponding to the (111) reflection, with a corrected full width at half-maximum (FWHM) of ~590±90 arc-sec. Infrared spectroscopy of SiC SOI structures obtained under optimum carboniza-tion conditions exhibited a sharp absorption peak produced by the Si-C bond at 795 cm−1, with FWHM of ∼ 20–25 cm−1. Metalorganic CVD growth of GaN on the (111) SiC SOI was carried out with trimethylgallium and NH3. The growth of a thin (≤200?), low temperature (500°C) GaN buffer layer was followed by the growth of a thick (∼2 μm) layer at 1050°C. Optimum surface morphology was obtained for zero buffer layer. XRD indicates highly oriented hexagonal GaN, with FWHM of the (0002) peak of ~360±90 arc-sec. Under high power excitation, the 300°K photoluminescence (PL) spectrum of GaN films exhibits a strong near band-edge peak (at λp~371 nm, with FWHM = 100–150 meV) and very weak yellow emission. Under low power excitation, the 370 nm PL emission from the GaN/SiC SOI structure increases rapidly with SiC carbonization temperature, while the yellow band (∼550–620 nm) correspondingly decreases.  相似文献   

20.
Biaxial strains resulting from mismatches in thermal expansion coefficients and lattice parameters in 22 GaN films grown on A1N buffer layers previously deposited on vicinal and on-axis 6H-SiC(0001) substrates were measured via changes in the c-axis lattice parameter. A Poisson’s ratio of ν = 0.18 was calculated. The bound exciton energy (EBX) was a linear function of these strains. The shift in EBX with film stress was 23 meV/GPa. Threading dislocations densities of ~1010/cm2 and ~108/em2 were determined for GaN films grown on vicinal and on-axis SiC, respectively. A 0.9% residual compressive strain at the GaN/AIN interface was observed by high resolution transmission electron microscopy (HRTEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号