首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A highly porous NiO/Ag composite film is prepared by the combination of chemical bath deposition and silver mirror reaction. The as-prepared NiO/Ag composite film has an interconnecting reticular morphology made up of NiO flakes with highly dispersed Ag nanoparticles of about 6 nm. The pseudocapacitive behavior of the NiO/Ag composite film is investigated by cyclic voltammograms (CV) and galvanostatic charge–discharge tests in 1 M KOH. The NiO/Ag composite film exhibits weaker polarization, higher specific capacitance and better cycling performance as compared to the unmodified porous NiO film. The specific capacitance of the porous NiO/Ag composite film is 330 F g−1 at 2 A g−1 and 281 F g−1 at 40 A g−1, respectively, much higher than that of the unmodified porous NiO film (261 F g−1 at 2 A g−1 and 191 F g−1 at 40 A g−1). The enhancement of pseudocapacitive properties is due to highly dispersed Ag nanoparticles in the composite film, which improves the electric conductivity of the film electrode.  相似文献   

2.
A novel class of electrochemical supercapacitor electrode material has been electrochemically synthesized from a manganese halide complex in water-containing acetonitrile electrolyte at room temperature. This material has been physically and chemically characterized by scanning electron microscopy, X-ray photoelectron microscopy (XPS), FT-Raman microscopy and cyclic voltammetry. XPS and FT-Raman characterization suggest that this material is composed of manganese oxide with a chemical composition of Mn3O4 and containing a moderate amount of carbon. Cyclic voltammetric characterization indicates that this material has higher electronic conductivity than usually seen for manganese oxide and that it shows fast kinetics for the charge-discharge process in both aqueous and acetonitrile electrolytes. The material provides a large pseudocapacitance over a potential window of about 1 V in aqueous electrolyte and about 2 V in acetonitrile electrolyte. It is therefore a good candidate as a material for an electrochemical supercapacitor electrode.  相似文献   

3.
Long-term electrochemical behaviors of hydrated MnO2 electrochemical capacitor (EC) electrode in alkali chloride (KCl(aq)) electrolyte have been studied by using potential cycling for thousands of cycles within different potential windows spanning from 0.8 V (versus Ag/AgCl(aq)) to varied lower-end potentials below the open-circuit potential. Three potential ranges resulting in different cycling behaviors of the oxide EC have been identified. Range I: cycling above 0.2 V results in no change in either microstructure or surface chemistry of the oxide electrode, and no capacitance reduction has been observed. Range II: cycling down to 0.0 V leads to extensive morphological reconstruction and limited reduction of surface Mn ions, while the electrode capacitance remains stable. Range III: cycling with lower-potential end below 0.0 V results in obvious capacitance reduction, along with different morphological reconstruction and Mn reduction from those in Range II. For each selected lower-end potential in Range III, the capacitance descends to a plateau within first thousand cycles, and the extent of the capacitance reduction increases as the lower-end potential decreases.  相似文献   

4.
Electrochemical reduction of perchlorate ions on platinum-activated nickel   总被引:1,自引:0,他引:1  
The electrochemical reduction of perchlorate anion has been studied in a cell with a nickel working electrode and a platinum counter electrode in concentrated solutions of HClO4. Significant reduction of perchlorate to chloride ions occurs on the nickel cathode in the potential region where hydrogen evolution occurs. It is shown that the mechanism of this process involves platinum deposited in small amounts on the cathode as a result of oxidation of the platinum anode in the perchloric acid solution. The reduction of perchlorate is accompanied by oxidation of the nickel cathode, which is attributed to chlorate ions formed in the initial step of perchlorate reduction. Changes in the surface structure of the nickel electrode have been followed using atomic force microscopy.  相似文献   

5.
Electrochemical capacitors have attractive performance features for gas-electric hybrid vehicle applications, namely high-power density and essentially unlimited cycle life. A capacitor system can efficiently capture and store the 5-10 s of braking energy generated during vehicle stopping and then release it during subsequent vehicle acceleration. Even with their exceptional power performance, these types of capacitors have less than 100% cycle efficiency—some energy is always lost as heat. Thus, high-rate cycling of electrochemical capacitors may create thermal management problems, the magnitude increasing with cycle rate. This paper examines energy loss of capacitors undergoing periodic constant-current charge/discharge cycling from one-half rated voltage to rated voltage. Cycle efficiencies of five commercial, large-cell capacitors are reported as a function of cycle rate and compared with series-RC equivalent circuit model results. Three of the capacitors were well represented by such the simple model with good correlation over a span covering almost two orders of magnitude of charge/discharge times. The other two capacitors were not well represented by this simple model, which was due to their substantially greater porous electrode behavior. Consequently, the series-RC model appears adequate for investigating thermal management issues of some, but not all large ECs and demonstrates that caution is needed when selecting capacitor electrical models to perform thermal management engineering.  相似文献   

6.
Titania nanotube array with an enlarged tube diameter of 110 nm and length of 700 nm was grown on titanium metal by a potentiostatic anodization in hydrofluoric acid-phosphoric acid-ethenyl glycol electrolyte. Nickel hydroxide was introduced into this titania nanotubes by either an electrodeposition-oxidation or hydrothermal process. Nickel oxide-titania composite was finally formed by heating treatment at 300 °C. Such a well-defined nanocomposite supported on titanium substrate was designed as a functional nanotube array electrode for the redox capacitance application. The morphology, microstructure and electrochemical properties of the nanocomposites were investigated by field emission scanning electron microscope, X-ray diffraction, energy dispersive X-ray diffraction and cyclic voltammetry measurements. It was found that nickel oxide could be embedded in titania nanotubes and extend from inner wall to top layer with an open pore mouth. The entire tube lengths were approx. 770 nm and 710 nm, meanwhile nickel-to-titanium atom ratios were determined as 9.6 at% and 36.4 at% for nickel oxide-embedded titania by an electrochemical and hydrothermal synthesis, respectively. The corresponding specific redox capacitance was also increased from 26 mF cm−2 to 85 mF cm−2 with highly reversible charge-discharge stability. Such an improvement was mostly ascribed to more accessible reaction interface of electroactive nickel oxide through its higher loading and a uniform dispersion on titania nanotubes. The capacitance was further increased up to 128 mF cm−2 for 36.4 at% nickel-containing nickel oxide-titania/titanium electrode when a porous graphite carbon instead of a platinum sheet was used as a cathode.  相似文献   

7.
The article presents the results of a study on activated carbon fiber cloth (AC) and a hydrophobic microporous polypropylene (PP) membrane, both chemically modified with acidic acetone aldol condensation products, and on testing their use as an electrode material and separator in electric double layer capacitors (EDLCs). Polymer hydrogel used was based on poly(acrylamide) (PAAM), H2SO4 and water. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry and galvanostatic charge–discharge cycle tests and also by impedance spectroscopy. As a result, the capacitor with polymer hydrogel was found to exhibit similar capacitance as that with the H2SO4 aqueous solution and an excellent high-rate dischargeability. At the 4000th cycle of potential cycling (0.5 A g−1) the specific capacitance of 132 F g−1 was obtained with a energy density of 3.45 Wh kg−1 at a power density of 56 W kg−1. The above results provide valuable information to explore the novel composition of EDLCs.  相似文献   

8.
The electrochemical properties of nanocrystalline Co-doped Mn oxide electrodes were investigated to determine the relationship between physicochemical feature evolution and the corresponding electrochemical behavior of synthesized electrodes. Co-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type structure were synthesized by anodic electrodeposition on Au coated Si substrates from a dilute solution of 0.01 M Mn acetate (Mn(CH3COO)2) and 0.001 M Co sulphate (CoSO4).Electrochemical characterization of synthesized electrodes, with and without a conducting polymer (PEDOT) coating, was performed with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) at different scan rates. In addition, structural characterization of as-deposited and cycled electrodes was conducted using SEM, TEM and XPS.Capacitance values for all deposits increased with increasing scan rate to 100 mV s−1, and then decreased after 100 mV s−1. The Mn–Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn–Co oxides. Mn–Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 F g−1) at a scan rate of 100 mV s−1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution.  相似文献   

9.
A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer–Emmett–Teller method. The redox reactions of [VO2]+/[VO]2+ and V3+/V2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO2]+/[VO]2+ and V3+/V2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.  相似文献   

10.
The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at −0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni3O4 and high-valence nickel oxides with the structure of NiO2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution.  相似文献   

11.
Electrochemical deposition of ZnO from aqueous nitrate solutions on nickel and platinum electrodes was investigated using the voltammetry technique to determine the optimal regimes in both potentiostatic and galvanostatic modes for acquiring polycrystalline ZnO films. Scanning electron microscopy, X-ray diffractometry, and X-ray microanalysis of the formed ZnO films are presented, showing a polycrystalline structure of the ZnO films with a preferable orientation in the (0 0 0 2) direction and an exact stoichiometric composition. The deposited ZnO films demonstrate a strong visible yellow-greenish photoluminescence at room temperature with a maximum at 600 nm that can be referred to crystal lattice oxygen defects. The maximum of the photoluminescence excitation spectrum at 370 nm corresponds to the band gap of ZnO (3.3–3.35 eV) confirming that band-to-band excitation mechanism takes place.  相似文献   

12.
Spherical β-Ni(OH)2 was modified by a low-cost method of normal ball milling (NBM), and the physical properties of both ball-milled and un-milled Ni(OH)2 were characterized by transmission electron microscopy, specific surface area, particle size distribution and X-ray diffraction. It was found that NBM could obviously increase the surface area, decrease the particle and crystallite size, and reduce the crystallinity of β-Ni(OH)2, which were advantageous to the improvement of the electrochemical activity of Ni(OH)2. NBM also lowered the packing density and flowability of Ni(OH)2, as revealed by the measurements of tapping density and angle of repose. Electrochemical performances of pasted nickel electrodes with an addition of ball-milled Ni(OH)2 to spherical Ni(OH)2 as the active material were investigated, and were compared with those of the pure spherical Ni(OH)2 electrodes. Charge/discharge tests showed that ball-milled Ni(OH)2 addition could enhance the charging efficiency, specific discharge capacity, discharge voltage and high-rate capability of the electrodes. This performance improvement could be attributed to a more compact electrode microstructure, better reaction reversibility and lower electrochemical impedance, as indicated by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Thus, it was an effective method to modify the microstructure and improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of ball-milled Ni(OH)2 to spherical Ni(OH)2 as the active material.  相似文献   

13.
叙述了球型氢氧化亚氧化亚镍的制备及电化性能测定的情况。结果表明:球型与普通型氢氧化亚镍相比,改善了粉末的流动性,提高了充填密度和活性利用率,是制备高能镍电极的理想材料。  相似文献   

14.
Nickel oxide (NiO) powder was synthesized by a modified sol-gel method using nickel acetate, citric acid and ethylene glycol as precursors. The synthesized material was thermally annealed at 250?°C for 2?h (pre-calcination step) and at 800?°C for 1?h (calcination). Scanning electron microscopy shows formation of particles with sizes of up to 50?μm after pre-calcination and of ? 10?μm after calcination. Nickel, oxygen and carbon were detected by energy dispersive X-ray spectroscopy (EDS) in the pre-calcined material, while only Ni and O were found after the calcination process. X-ray photoelectron spectroscopy (XPS) indicates that the composition of the synthesized nickel oxide is close to stoichiometric. Raman and Fourier transform infrared spectra show only characteristic peaks of nickel oxide. The calcined particles have cubic crystalline structure of NiO as proved by X-ray diffraction (XRD). EDS, XPS, XRD, Raman and FTIR confirmed that high purity nickel oxide was obtained by the proposed low-cost and highly effective method.  相似文献   

15.
A mix-valenced nickel oxide, NiOx, was prepared from nickel nitrate aqueous solution through a precipitation with sodium hydroxide and an oxidation by sodium hypochlorite. Further, pure nickel oxide was obtained from the NiOx by calcination at 300, 400 and 500 °C (labeled as C300, C400 and C500, respectively). They were characterized by thermogravimetry (TG), X-ray diffraction (XRD), nitrogen adsorption at −196 °C and temperature-programmed reduction (TPR). Their catalytic activities towards the degradation of phenol were further studied under continuous bubbling of air through the liquid phase. Also, the effects of pH, temperature and kinds of nickel oxide on the efficiency of the microwave-enhance catalytic degradation (MECD) of phenol have been investigated. The results indicated that the relative activity affected significantly with the oxidation state of nickel, surface area and surface acidity of nickel oxide, i.e., NiOx (>+2 and SBET = 201 m2 g−1)  C300 (+2 and SBET = 104 m2 g−1) > C400 (+2 and SBET = 52 m2 g−1) > C500 (+2 and SBET = 27 m2 g−1). The introduction of microwave irradiation could greatly shorten the time of phenol degradation.  相似文献   

16.
Hydrous RuO2 particles were electrochemically loaded into poly(3,4-ethylenedioxythiophene) doped poly(styrene sulfonic acid), PEDOT-PSS, matrix by employing various potential cycles in cyclic voltammetry and to fabricate the PEDOT-PSS-RuO2·xH2O electrode. The amount of hydrous RuO2 particles loaded into the PEDOT-PSS matrix was easily controlled by varying the number of potential cycles. Scanning electron microscopy photographs reveal a uniform dispersion of hydrous RuO2 particles in the porous structure of PEDOT-PSS matrix. Raman spectrum confirms the incorporation of hydrous RuO2 into PEDOT-PSS matrix. Chronopotentiometry and cyclic voltammetry were employed in 0.5 M H2SO4 to evaluate the capacitor properties. Specific capacitance values were determined by chronoamperometry. An increasing trend in specific capacitance with loaded amount of hydrous RuO2 particles in PEDOT-PSS was noticed. A maximum specific capacitance of 653 F/g was achieved.  相似文献   

17.
《Ceramics International》2023,49(4):6470-6478
Nickle-based oxides exhibit seamless redox activity and show undisputed parameter optimization flexibility, which makes them a candidate of choice for various scientific analysis and multipurpose execution. The communique addresses the domain of energy storage of hydrothermally fabricated nickel oxide nanostructures by analysing the capacitive behaviour of the sample. The crystal geometry, chemical composition and bonding state of the material were carried out through XRD and XPS analysis, respectively. Electron microscopy showed systematically aligned nano-needles, which in aggregate represent an urchin. A comparative study of specific capacitance (Cs) at a scan rate of 1 mVs?1 showed an enhanced Cs of nickel oxide embedded Ni-foam (1125 Fg-1) against nickel oxide deposited Ni-foil (454 Fg-1). At a current density of 8 mAcm ?2, the nickel oxide based Ni-foam electrode exhibited an energy density of 23 Whkg?1 and a power density of 259 Wkg-1 which makes it instrumental in electrochemical devices. The Ni-foam electrode also showed less ‘cycle fatigue’ as its charge/discharge stability dipped by just 12% even after 5000 cycles. The novel supercapacitor electrode developed in this study exhibits excellent specific capacitance, high stability, high power density, and low impedance, demonstrating its promising practical functionality.  相似文献   

18.
In this article,cobalt additives are introduced into nickel hydroxide electrodes by two incorporation methods—co-precipitated cobalt hydroxide during the nickel hydroxide synthesis or post-added CoO with nickel hydroxide. The results of X-ray diffraction, cyclic voltammetry, electrochemical impedance spectroscopy, and charge–discharge tests indicate that (i) the diffraction peaks show a decrease in intensity and increase in the half peak breadths for Ni(OH)2 with co-precipitated cobalt hydroxide; (ii) the electrochemical activity of nickel hydroxide can be improved by both incorporated cobalt and the effects of post-added CoO are more notable; (iii) CoOOH derived from post-added CoO is not stable in the KOH electrolyte when the potential of the Ni(OH)2 electrode is lowered and its reduction product may be inactive, thus results in an irreversible capacity loss of nickel-metal-hydride battery after over-discharge-state storage.  相似文献   

19.
Graphene oxide (GO) cast on conductive substrates was electrochemically reduced in some organic solvents. The amount of electricity required for the almost complete reduction of GO was 2.0 C for 1 mg GO, corresponding to attaching of a one-electron reducible species to each benzene ring in graphene. The electrochemically reduced GO film gave an electrical conductivity of about 3 S cm−1 and exhibited a relatively high specific capacitance of 147.2 F g−1 in propylene carbonate. The electrochemical reduction of GO was feasible on Al foils as well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号