首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A pulse mass analyzer was used to study the vapor phase adsorption of organic compounds on single-walled carbon nanotubes and chemically modified/oxidized SWCNTs. The change in mass of a packed bed of adsorbent held at 200 °C was observed following the injection of a pulse of an organic compound from the series: ethanol, iso-propanol, cyclohexane, cyclohexene, benzene, or n-hexane. The relative strength of adsorption was obtained by the mass increase resulting from injection of the pulse and by the time required for desorption. This time was broken into the transit time to reach the end of the bed and the half-time for return from peak to baseline. Hexane was the most strongly held compound of the organic sequence. Oxidative purification of a raw nanotube sample produced a less hydrophobic surface. The effect of the purification was reversed by thermolysis at 700 °C, which removed oxygenated functional groups and increased the affinity for hydrocarbons. The amorphous carbon associated with the raw nanotube sample is a strong adsorbent for hydrocarbons. By comparison, an activated carbon had a greater affinity for hydrocarbons than any of the nanotube samples.  相似文献   

2.
L.W. Wang  R.Z. Wang  Z.S. Lu  C.J. Chen  K. Wang  J.Y. Wu 《Carbon》2006,44(13):2671-2680
The available adsorption working pairs applied to adsorption refrigeration system, which utilize activated carbon as adsorbent, are mainly activated carbon-methanol, activated carbon-ammonia, and composite adsorbent-ammonia. The adsorption properties and refrigeration application of these three types of adsorption working pairs are investigated. For the physical adsorbents, consolidated activated carbon showed best heat transfer performance, and activated carbon-methanol showed the best adsorption property because of the large refrigerant amount that can be adsorbed. For the composite adsorbents, the consolidated composite adsorbent with mass ratio of 4:1 between CaCl2 and activated carbon, showed the highest cooling density when compared to the granular composite adsorbent and to the merely chemical adsorbent. The physical adsorption icemaker that employs consolidated activated carbon-methanol as working pair had the optimum coefficient of refrigeration performance (COP), volume cooling power density (SCPv) and specific cooling power per kilogram adsorbent (SCP) of 0.125, 9.25 kW/m3 and 32.6 W/kg, respectively. The composite adsorption system that employs the consolidated composite adsorbent had a maximum COP, SCPv and SCP of 0.35, 52.68 kW/m3 and 493.2 W/kg, respectively, for ice making mode. These results are improved by 1.8, 4.7 and 14 times, respectively, when compared to the results of the physical adsorption icemaker.  相似文献   

3.
F. Cosnier  G. Furdin  J.F. Marêché 《Carbon》2005,43(12):2554-2563
A technique of surface hydrophobisation has been applied to two microporous carbonaceous adsorbents. A granular active carbon and an activated carbon fibre, both formerly chemically treated in order they preferentially present hydroxyl surface functions, were modified by action of vinyltrimethoxysilane (vtmos) in liquid phase. The resulting samples were characterised using sorption of nitrogen, FTIR, XPS and 29Si MAS-NMR spectroscopy, and elemental analysis. Their stability and heat treatment have also been investigated through thermal analysis.The efficiency of the hydrophobisation treatment was evaluated by static adsorption of water vapour and vapours of chlorinated volatile organic compounds (VOCs): dichloromethane and trichloroethylene. Grafting of the vtmos and development of a “coating” of polysiloxane onto the adsorbent induced a modification of the carbon surface but also a partial filling of the porosity. These modifications accounted for a decrease of both the amounts of water and VOC adsorbed by the hydrophobised materials. However, water uptakes were found to be much lower than those of the VOCs, evidencing an enhanced selectivity of the hydrophobised adsorbents toward VOCs.  相似文献   

4.
5.
Three different carbonaceous materials, activated carbon, graphene oxide, and multi-walled carbon nanotubes, were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The adsorbents were characterized by N2 adsorption/desorption isotherms, infrared spectroscopy, particle size, and zeta potential measurements. Batch adsorption experiments were carried out to study the effect of solution pH and contact time on dye adsorption properties. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Langmuir isotherm model. The remarkably strong adsorption capacity normalized by the BET surface area of graphene oxide and carbon nanotubes can be attributed to π–π electron donor acceptor interaction and electrostatic attraction.  相似文献   

6.
Z.S. Lu  L.W. Wang  C.J. Chen 《Carbon》2006,44(4):747-752
To improve the performance of the adsorption refrigeration of CaCl2-ammonia adsorption system, activated carbon has been distributed uniformly in the mass of CaCl2, thereby helping to enhance mass transfer and uplift the cooling power density. A multifunctional heat pipe adsorption refrigerator, in which activated carbon-CaCl2 is used as compound adsorbent and ammonia as refrigerant, is designed. Water and acetone are used as working liquids for the heat pipe. This paper presents a study on the adsorption refrigeration performances of this adsorption refrigerator under two different working conditions, ice-maker for fishing boat driven by the waste heat from exhaust gases, and solar ice-maker driven by solar water heating. The obtained average SCP (specific cooling power) and the COP (coefficient of performance) of the refrigerator were measured to be 770.4 W/kg and 0.39 at about −20 °C of evaporating temperature for the former working condition, and they were 161.2 W/kg and 0.12 at about −15 °C of evaporating temperature for the later working condition.  相似文献   

7.
The objective of this work was to increase the understanding of the adsorption competition between an odour compound, 2-methylisoborneol, and natural organic material (NOM). Part I describes the characterisation of six commercially available activated carbons, undertaken using nitrogen gas adsorption, surface titrations, and Fourier transform infrared spectroscopy. The natural organic material (NOM) from one raw water and four fractions obtained from an isolation and fractionation procedure undertaken on the same raw water, were characterised using 13C NMR, high-performance size exclusion chromatography, UV-visible absorbance and elemental analysis. Simultaneous adsorption of NOM and MIB indicated that the adsorption of the NOM was largely dependent on the pore volume distribution of the activated carbons, and less influenced by the variation in surface chemistry. Larger NOM molecules showed greater relative rates of adsorption where the access to the internal structure of the carbon was restricted by size exclusion, due to the shorter diffusion distances to adsorption sites travelled by the larger molecules. As the concentration of MIB was extremely low compared with that of the NOM in these experiments, no effect of MIB on NOM adsorption was seen. Part II reports the significant effect of the NOM solutions on the adsorption of MIB.  相似文献   

8.
Hydrogen adsorption data on as-grown and heat-treated single walled carbon nanotubes (SWNTs) obtained by a volumetric procedure using a Quantachrome Autosorb-1 equipment are presented. The amounts of hydrogen adsorbed at atmospheric pressure reach approximately 0.01 wt.% at 298 K and 1 wt.% at 77 K. The isosteric heat of adsorption has been calculated for both samples from H2 equilibrium adsorption data at three temperatures, having initial values of 7.42 and 7.75 kJ mol−1. Studies in porous structure by N2 adsorption and density measurements in helium pycnometer are reported.  相似文献   

9.
W. Zhu  J.C. Groen  F. Kapteijn 《Carbon》2005,43(7):1416-1423
Adsorption equilibria of light alkanes and alkenes on Kureha activated carbon were investigated using a volumetric method. Single-component adsorption isotherms are reported at pressures up to 120 kPa and at temperatures in the range from 194 to 338 K for ethane and ethene and from 273 to 358 K for propane and propene. The Tóth model appropriately describes the equilibrium data over the whole range of conditions. The saturation capacity for the alkene extracted by the Tóth model is higher than for the corresponding alkane, attributed to the higher packing efficiency of the alkene molecules inside the micropores. An interesting reversal in alkane/alkene adsorption selectivity with pressure is observed: at low pressures the selectivity towards the alkanes is driven by energetic effects while at high pressures the selectivity is towards the alkenes due to entropic effects.  相似文献   

10.
Peng-Xiang Hou 《Carbon》2003,41(13):2471-2476
Multi-walled carbon nanotubes (MWNTs) with different mean outer diameters in the range of 13-53 nm, synthesized by the catalytic decomposition of hydrocarbons using a floating catalyst method, were purified and pretreated with the same procedure for volumetric hydrogen adsorption/desorption measurements. It was found that the hydrogen storage capacity of the purified and pretreated MWNTs was proportional to their diameter, and that hydrogen in all types of MWNTs measured could not be completely desorbed at room temperature and ambient pressure. A possible mechanism for the above behavior was proposed based on the results of cryogenic nitrogen adsorption analysis and high-resolution transmission electron microscopy observations. It was considered that small “carbon islands” might be the main hydrogen adsorption site in MWNTs. The effects of metal catalyst as well as an etched cavity on the surface of MWNTs on the hydrogen adsorption/desorption of MWNTs were also discussed.  相似文献   

11.
The adsorption of activated carbon fibers (ACFs) and their surface characteristics were investigated before and after electrochemical polarization. The adsorption kinetics of m-cresol showed the dependence on polarized potential, and the adsorption rate constant increased by 77.1%, from 6.38 × 10−3 min−1 at open-circuit (OC) to 1.13 × 10−2 min−1 at polarization of 600 mV. The adsorption isotherms at different potentials were in good agreement with Langmuir isotherm model, and the maximum adsorption capacity increased from 2.28 mmol g−1 at OC to 3.67 mmol g−1 at polarized potential of 600 mV. These indicated that electrochemical polarization could effectively improve the adsorption rate and capacity of ACFs. The surface characteristics of ACFs before and after electrochemical polarization were evaluated by N2 adsorption-desorption isotherms, scanning electron microscope (SEM), zeta potential and Fourier transform infrared spectroscopy (FTIR). The results showed that the BET specific surface area and pore size increased as the potential rose. However, the surface chemical properties of ACFs hardly changed under electrochemical polarization of less than 600 mV. This study was beneficial to understand the mechanism of electrochemically enhanced adsorption.  相似文献   

12.
This paper deals with the study of the effect that the porosity and the surface chemistry of the activated carbons have on the adsorption of two VOC (benzene and toluene) at low concentration (200 ppmv). In this sense, activated carbons with very different porosities and contents in oxygen surface groups have been tested. Our results regarding the effect of the porosity show that the volume of narrow micropores (size <0.7 nm) seems to govern the adsorption of VOC at low concentration, specially for benzene adsorption. Regarding the surface chemistry, AC with low content in oxygen surface groups have the best adsorption capacities. Among the AC tested, those prepared by chemical activation with hydroxides exhibit the higher adsorption capacities for VOC. The adsorption capacities achieved are higher than those previously shown in the literature for these conditions, specially for toluene. Adsorption capacities as high as 34 g benzene/100 g AC or 64 g toluene/100 g AC have been achieved.  相似文献   

13.
F Haghseresht  G.Q.Max Lu 《Carbon》2003,41(5):881-892
Adsorption of p-cresol, nitrobenzene and p-nitrophenol on treated and untreated carbons is investigated systematically. The effects of carbon surface chemistry and solution pH are studied and discussed. All adsorption experiments were carried out in pH-controlled solutions to examine the adsorption properties of the adsorption systems where the solutes are in molecular as well as ionic forms. Using the homogeneous Langmuir equation, the single solute parameters are determined. These parameters are then used to predict the binary solute adsorption isotherms and gain further insights into the adsorption process.  相似文献   

14.
15.
Activated carbon cloths are recent adsorbents whose adsorption properties are well known for monocomponent solutions of organics or metal ions. However, to treat wastewaters with these materials, their performance has to be determined in multicomponent solution. This work studies adsorption competition between metal ions (Cu2+, Pb2+) and organic matter (benzoic acid). The first part investigates adsorption equilibrium of monocomponent metal ions solutions and shows the dependence of adsorption capacities on adsorbent porosity and metal ions chemical properties (molecular weight, ionic radius and electronegativity). The influence of pH is also demonstrated. The second part focuses on adsorption competition: (1) between both metal ions (a decrease of adsorption capacities is observed, whose value is related to adsorption kinetics of metal ions); (2) between metal ions and organic matter, in solution or adsorbed onto the activated carbon cloth (a strong influence of pH is shown: when benzoic acid is under benzoate form, in both cases adsorption is increased due to the formation of ligands between adsorbed benzoate ions and metals).  相似文献   

16.
Ji Yang  Haijun Fang  Yalin Wang 《Carbon》2006,44(8):1367-1375
The primary objective of this paper was to demonstrate the suitability of ACF in effectively adsorbing CS2 from water, and to compare its performance vs. that of GAC. Commercial ACF was modified to increase its specific surface and pore volume. CS2 removal was studied by adding ACF to water containing CS2 under varying conditions. The experimental results reveal that ACF is a potential adsorbent for capturing CS2 under both equilibrium and dynamic adsorption/desorption conditions. The adsorption capacity of ACF was observed to considerably increase with the increase of CS2 concentration: It was observed that the modified ACF exhibited greater adsorption for CS2 than the GAC, and the mechanism for this difference was explored; The modified ACF showed a consistent performance within a pH range from 3-9; Under the experimental conditions, an modified ACF sample was adsorbed and desorbed by boiling water repeatedly without exhibiting any appreciable degradation in its adsorption performance.  相似文献   

17.
18.
19.
In this work the performance of activated carbons prepared from raw and demineralised lignite for gas-phase Hg° removal was evaluated. A two-stage activation procedure was used for the production of the activated samples. In order to study the effect of mineral matter on pore structure development and surface functionality of the activated carbons, a demineralisation procedure involving a three-stage acid treatment of coals, was used, prior to activation. Hg° adsorption tests were realized in laboratory-scale unit consisted of a fixed-bed reactor charged with the tested activated samples. The examined adsorbent properties that may affect removal capacity were the pore structure, the surface chemistry and the presence of sulphur on the surface of activated carbons. The obtained results revealed that activated carbons produced from demineralised lignite posses a high-developed micropore structure with increased total pore volume and BET surface area. These samples exhibit enhanced Hg° adsorptive capacity. In all cases, mercury removal efficiency increased by sulphur addition. Finally, the starting material properties and activation conditions affect the concentration and the type of the oxygen groups on activated carbon surface, that have been determined with TPD-MS experiments.  相似文献   

20.
Qiuli Lu  George A. Sorial   《Carbon》2004,42(15):3133-3142
The impact of adsorbent pore size distribution (PSD) on adsorption mechanism for the multi solute system was evaluated in this study. Anoxic and oxic adsorption equilibrium for the single solute (phenol), binary solute (phenol/2-methylphenol) and ternary solute (phenol/2-methylphenol/2-ethylphenol) systems on one granular activated carbon (GAC) F400 and two types of activated carbon fibers (ACFs), namely, ACC-10 and ACC-15, were determined. F400 has a wide PSD, while ACC-10 and ACC-15 have narrow PSD and their critical pore diameters are 8.0 Å and 12.8 Å, respectively. In single solute adsorption, the increase of adsorptive capacity under oxic conditions as compared to anoxic ones was related to the PSD of the adsorbent. Binary solute adsorption on ACC-10 and ternary solute adsorption on ACC-15 indicated no impact of the presence of molecular oxygen on the adsorptive capacity and the adsorption isotherms were well predicted by the ideal adsorbed solution theory (IAST). Significant differences between oxic and anoxic isotherms were noticed for other multicomponent adsorption systems. The narrow PSD of ACFs was effective in hampering the oligomerization of phenolic compounds under oxic conditions. Such a phenomenon will provide accurate predictions of fixed bed adsorbers in water treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号