首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated carbons have been prepared from petroleum cokes by the combination of a chemical treatment with HClO4 or H2O2 and a chemical activation with KOH at a constant KOH/coke ratio of 3/1. The influence of different chemical treatments on the properties of the activated carbon precursors and final carbons activated with KOH was invested by using XRD, FTIR, and BET techniques. XRD results indicated that the value of interplanar distance d002 increased by chemical treatment and the disappearance of the peak corresponding to 0 0 2 faces correlated to high specific surface area. FTIR studies showed that chemical modification promoted the formation of surface oxygen functionalities. Significant effects on BET surface area, pore texture and iodine adsorption capacity were evidenced. The results show that chemical modification prior to activation dramatically increased the BET surface area and total pore volume of the resulting activated carbon. Modified petroleum coke based activated carbon with chemical activation had higher specific surface area (2336 m2/g) and better iodine adsorption value (1998 mg/g).  相似文献   

2.
Chemical activation of carbons is currently a very common method for obtaining activated carbons with very high surface areas. KOH is one of the most effective agents employed for this purpose. However, the reaction mechanism of this kind of activation it is not yet completely elucidated, although some models have been proposed. In this paper, an activated charcoal was obtained from a lignocellulosic material by impregnation with different amounts of KOH. The activation process was studied by X-ray photoelectron spectroscopy and X-ray diffraction. These techniques point to the formation of different potassium compounds at the carbon surface (mainly K2CO3 and different oxides) and show the dependence between surface area development in the carbons and the amount of K2CO3 formed during the activation process.  相似文献   

3.
制备条件对超高比表面积活性炭结构的影响   总被引:3,自引:0,他引:3  
以石油焦为炭前驱材料、用不同试剂作为活化剂,讨论了不同活化剂对石油焦的活化作用。在以KOH为活化剂时,研究了活化条件对活性炭孔结构的影响。结果表明,强碱具有明显的活化作用,盐类试荆的活化作用很差,且KOH的活化作用远优于NaOH。在碱与碳质量比为4、800℃下活化60min制得了BET比表面积为3422m^2/g的超高比表面积活性炭(SBET≥2500m^2/g)。且碱与碳质量比越大、活化温度越高及活化时间越长,所制得活性炭中大于2nm的孔所占的比例越大。  相似文献   

4.
The effect of oxidation pre-treatment of a phenolic resin fiber was examined from two aspects: one is to examine if the pre-treatment can be a means to increase the yield of carbon fiber and activated carbon fiber (ACF), and the other is to study the effect of the pre-treatment on the carbonization and activation behavior. A phenolic resin fiber was oxidized in air at 220 to 270 °C and it was subsequently carbonized at 900 °C and activated by steam at 900 °C. The oxidation was found to affect significantly the subsequent carbonization process in the way that the yield of the carbonized fiber increased with the severity of the oxidation. On the other hand, the oxidation was found not to affect the chemical and physical properties of the carbonized fiber. The ACF produced from the oxidized fiber had almost same pore structure as the ACF produced from the non-treated fiber when compared at a same activation level. The maximum yield of ACF produced from the oxidized fiber was 1.13 times larger than the yield of ACF produced from the non-treated fiber. Thus we could increase the production yield of ACF significantly without losing its high adsorption performance.  相似文献   

5.
The reaction with air of a large number (22) of high-sulphur petroleum cokes was studied by temperature-ramped thermogravimetric analysis. The kinetic parameters for each coke were established, based on BET surface areas. The oxidation rates (kgC m−2 s−1 atm−1) were found to vary with sample mass. This was a result of limitations on oxygen transfer, despite the small masses and low heating rates used. Limitations were present both externally (from the crucible mouth to the bed surface) and internally (from the sample surface to the bed interior). A method to take these effects into account was adopted, based on an analysis of the relevant diffusion rates. Application of this method reconciled the rate data for four different sample masses, except at high temperatures. The formation of a partially fused ash crust is believed to be the reason for this latter effect.The activation energies of the cokes varied between 195 and 280 kJ mol−1, and the absolute rates varied by a factor of 10. They were between 1000 and 10,000 times higher than the average reactivity of carbon as reported in the literature. The elevated apparent rates are believed to have two causes, one in the combustion process and the other in the interpretation of the results. The first cause is the strong catalytic effect of the inorganic components, although the ash contents ranged only from 0.3 to 1.5%. The most active metal is vanadium, which is present in significant concentrations. The effectiveness of V2O5 as a gasifying catalyst is believed to be due to its low melting point. Increasing sulphur content in the cokes produces no perceptible change in the combustion rates. The second cause for poor combustion correlation is the inadequacy of BET surface area for expressing combustion rates.  相似文献   

6.
Although potassium hydroxide (KOH) is known to be effective in generating highly porous activated carbons, the mechanism of KOH activation has not been well elucidated. To develop porosity in carbon, a high KOH/carbon mass ratio must be maintained. Consequently, KOH, as the activating agent, represents a major part of the cost of the activation process. Focusing on the mechanism, particularly the activation products, the present work attempted to establish the technical feasibility of recycling KOH. Experiments revealed that the major products of KOH activation at 600–900°C are metallic K, K2CO3, CO and H2, which is supported by thermodynamic analysis. The overall reaction may be written as 6KOH + 4C = K2CO3 + 4K + 3H2 + 3CO. At temperatures over 900°C, K2CO3 becomes unstable and participates in activation reactions with carbon; a more suitable overall reaction would be KOH + C = CO + K + 0.5H2. As potassium ion is reduced to metallic K which is readily converted into KOH and hydrogen gas upon reacting with water, KOH recycling is feasible. The reuse of KOH in chemical activation could substantially reduce the cost of activation process. © 2011 Canadian Society for Chemical Engineering  相似文献   

7.
研究了以石油焦为原料,用氢氧化钾为活化剂制备高比表面积活性炭方法。通过正交实验与进一步的单因素实验考察了碱焦比、活化温度和活化时间对活性炭碘吸附值和活化收率的影响。实验结果表明碱焦比对活性炭碘吸附值影响最显著,增大碱焦比、延长活化时间和选择合适的活化温度能提高碘吸附能力。在碱焦比为4∶1,活化温度750℃和活化时间120 min条件下制备的活性炭BET比表面积可达2775 m2/g,总孔容为2.888 cm3/g。  相似文献   

8.
Five cokes of increasing content of anisotropic carbon were prepared. Polished surfaces of these cokes were characterized by optical microscopy in terms of components of optical texture. These surfaces were reacted with KOH at 873, 1073 and 1273 K in an inert atmosphere for 2 h and the resultant topography monitored by scanning electron microscopy (SEM). The extent of potassium take-up by coke particles was measured and the diffusion of potassium was detected by EDAX. Microstrength testing was made on the cokes before and after reaction with the alkali. Coke reactivity measurements were obtained for untreated and treated cokes. Results indicate that in an inert atmosphere the alkali reacts preferentially on the prismatic edges of anisotropic carbon and that the rates of reaction increase with increasing temperature. Potassium is able to diffuse into the interior of the more anisotropic coke particles and this casues weakening of the coke. The reactivity measurements indicate that for the more anisotropic cokes the effect of potassium as a catalyst in the solution-loss reaction is more pronounced than for the least anisotropic coke. These conclusions suggest that metallurgical coke in the blast furnace in the presence of alkali materials can lose strength by direct reaction over and above considerations of gasification processes.  相似文献   

9.
石油焦基高比表面积活性炭的制备   总被引:21,自引:2,他引:21  
以石油焦为原料,采用KOH化学活化法考察了破炭比、活化温度、保温时间以及原料粘度对活性炭吸附性能的影响。结果表明:以石油焦为原料可制得比表面积大于3200m2/g的高比表面积活性炭。这种活性炭的碘吸附量、亚甲基蓝吸附量和苯吸附量为常规活性炭的2~4倍.且孔径分布窄,孔容大。  相似文献   

10.
11.
对高硫石油焦采用化学预氧化再经高温煅烧(1 300℃)进行脱硫处理,并采用XRD和SEM对脱硫前后石油焦样品的结构和表面微观形貌进行分析表征。实验结果表明:常压室温下多种化学氧化剂脱硫效果比较,A酸-过氧化氢混合溶液对石油焦脱硫效果最好,其脱硫率达到20.72%;经A酸-过氧化氢混合溶液化学预氧化再高温煅烧(1 300℃)脱硫处理的石油焦的脱硫率相对直接煅烧或者只进行氧化脱硫处理的样品有显著提高,脱硫率可达55%;A酸-过氧化氢混合溶液化学预氧化处理不会破坏煅烧后石油焦存在的石墨雏晶结构,并且促使石油焦表面形成细微裂纹,这有利于煅烧时焦内部硫的逸出以及生产过程中煅烧石油焦原料与煤沥青的结合。  相似文献   

12.
Gasification of carbon resources including biomass and coal is one of promising energy production technologies. The R&D on effective and convenient gas cleaning processes for removal of contaminants as well as high efficient reliable gasifiers is essential for industrial application in broad fields. In this study, a dry process of synthesis gas cleaning by adsorption of H2S into activated cokes was proposed as a candidate of desulfurization technologies in gasification. The H2S adsorption performance of activated coke produced from coal, which are used industrially for de-SOx and de-NOx, was evaluated by the thermogravimetric analyses and the adsorption examination in a fixed bed under the atmospheric and high pressures. Activated coke was not only the most active at about 423 K for the H2S adsorption rate but also regenerative over 573 K by H2S desorption with a sufficient rate under an inert gas flow of nitrogen. The H2S adsorption performance of the activated coke was not inhibited by the co-existence of CO2 or COS but enhanced rather by the co-existence. The adsorbent was promisingly active for both H2S and COS adsorption as well. These behaviors suggest that the activated coke are available for simultaneous desulfurization of H2S and COS. The H2S breakthrough examination in the fixed bed revealed that it was possible to remove H2S to lower level than 1 ppm for a long time depending on the residence time of gas flow in the bed. When the adsorption operation was carried out under high pressures up to 0.6 MPa, the regeneration of activated coke by H2S desorption took place under the pressure reduced to the atmosphere. As the results, it was implied that the present activated coke could be applicable to the desulfurization process in coal gasification.  相似文献   

13.
以石油焦为原料经高温炭化和水蒸气活化处理制备出石油焦基活性炭,经硝酸氧化处理后,采用静态吸附法测试了2-甲基噻吩在石油焦基活性炭上的吸附性能。研究结果显示,制备的活性炭比表面积高于800 m2·g-1,孔容大于0.45 cm3·g-1,经硝酸处理后比表面积和总孔容有所下降。样品经硝酸处理后,对2-甲基噻吩的饱和吸附量显著增加,硝酸处理40 min得到的活性炭对2-甲基噻吩的饱和吸附量最大。2-甲基噻吩在石油焦基活性炭上的吸附动力学均遵循拟二级动力学模型,饱和吸附量随吸附温度的增加而减小,热力学上表现为放热,熵减且是自发进行的过程。  相似文献   

14.
15.
16.
About reactions occurring during chemical activation with hydroxides   总被引:2,自引:0,他引:2  
M.A. Lillo-Ródenas 《Carbon》2004,42(7):1371-1375
The chemical activation of anthracites with hydroxides has been shown to be of interest for the production of activated carbons with a highly microporous structure. In a previous paper, attention was placed on the reactions occurring during the chemical activation of an anthracite by NaOH and KOH. In the present work, the process of chemical activation by hydroxides has been extended to different coal precursors to confirm that such a chemical activation process starts through a solid-solid reaction and continues as a solid-liquid reaction. In such a solid reaction, the reactivity of the solid (precursor) should be a key parameter. The importance of the carbon reactivity on its reaction with hydroxides has been confirmed: the lowest rank coal reacts much easily and has a much lower temperature for the beginning of reaction than the highest rank coal.  相似文献   

17.
Different fibrous activated carbons were prepared from natural precursors (jute and coconut fibers) by physical and chemical activation. Physical activation consisted of the thermal treatment of raw fibers at 950 °C in an inert atmosphere followed by an activation step with CO2 at the same temperature. In chemical activation, the raw fibers were impregnated in a solution of phosphoric acid and heated at 900 °C in an inert atmosphere. The characteristics of the fibrous activated carbons were determined in the following terms: elemental analysis, pore characteristics, SEM observation of the porous surface, and surface chemistry. As the objective of this study was the reuse of waste for industrial wastewater treatment, the adsorption properties of the activated carbons were tested towards pollutants representative of industrial effluents: phenol, the dye Acid Red 27 and Cu2+ ions. Chemical activation by phosphoric acid seems the most suitable process to produce fibrous activated carbon from cellulose fiber. This method leads to an interesting porosity (SBET up to 1500 m2 g−1), which enables a high adsorption capacity for micropollutants like phenol (reaching 181 mg g−1). Moreover, it produces numerous acidic surface groups, which are involved in the adsorption mechanisms of dyes and metal ions.  相似文献   

18.
化学活化法制备活性炭的正交试验分析   总被引:5,自引:0,他引:5  
采用正交试验分析法对化学活化法制备木质活性炭的工艺过程进行设计,选择浸溃比,活化温度和活化时间3个因素,3个水平的正交试验方法进行了相关的实验:实验结果炙明,磷酸活化法制备木质活性炭工艺过程中,对活性炭得率影响最大的因素是浸渍比和活化温度,对活性炭亚甲蓝吸附值影响最大的因素是浸溃比,对活性炭苯酚吸附值影响最大的因素是活化时间。综合制备木质活性炭的得率和吸附性能影响因素.浸渍比是化学活化法制备木质活性炭的最重要的影响因素。  相似文献   

19.
20.
Starting from a commercial pelletized phosphoric acid based activated carbon, with a typical opened and developed micro and mesoporosity, a post-heat-treatment in KOH, at different KOH/activated carbon ratios, has been studied. In all the cases, a pore size shrinkage has been observed. To find an explanation for the reason of this micropore size distribution shrinkage different factors have been studied, among them: (a) effect of the presence of impurities coming from the activation process with phosphoric acid; (b) effect of the KOH post-treatment temperature; (c) heat-treatment temperature of the precursor (without chemical agent); (d) effect of the reagent nature (NaOH, NaCl and KCl vs. KOH). The variable that produces the most intense shrinkage effect, and the disappearance of the mesoporosity, is the heat-treatment in presence of hydroxide, which affects even using a low hydroxide/activated carbon ratio. Such a low hydroxide/activated carbon ratio does not produce activation, nor porosity development of the starting activated carbon during the treatment. This shrinkage phenomenon, which seems to be independent of the method of preparation used to prepare the activated carbon, can be understood considering our previous studies about the reactions involved during chemical activation by hydroxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号