首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of experiments were conducted to produce carbon molecular sieves (CMS) through carbon deposition from a locally available palm shell of Tenera type for separating gaseous mixtures. The process involves three stages; carbonization, physical activation with steam, and carbon deposition by using benzene cracking technique. Carbonization of the dried palm shells was occurred at 900°C for duration of 1 h followed by steam activation at 830°C for 30–420 min to obtain activated carbons with different degree of burn-offs. The highest micropore volume of activated carbon obtained at 53.2% burn-off was used as a precursor for CMS production. Subsequent carbon deposition of the activated sample at temperature range from 600 to 900°C for 30 min has resulted in a series of CMSs with different selectivities of CO2/CH4 and O2/N2. The kinetic adsorption isotherm of CO2, CH4, O2 and N2 at room temperature also presented in this work.  相似文献   

2.
A transformative platform is reported to derive ultra-thin carbon molecular sieve (CMS) hollow fiber membranes from dual-layer precursor hollow fibers with independently tuned skin layer and substrate properties. These ultra-thin CMS hollow fiber membranes show attractive CO2/CH4 separation factors and excellent CO2 permeances up to ~1,400% higher than state-of-the-art asymmetric CMS hollow fiber membranes. They provide a unique combination of permeance and selectivity competitive with zeolite membranes, but with much higher membrane packing density and potentially much lower costs.  相似文献   

3.
Pei Shi Tin  Tai-Shung Chung  Ye Liu  Rong Wang 《Carbon》2004,42(15):3123-3131
The separation of CO2/CH4 separation is industrially important especially for natural gas processing. In the past decades, polymeric membranes separation technology has been widely adopted for CO2/CH4 separation. However, polymeric membranes are suffering from plasticization by condensable CO2 molecules. Thus, carbon molecular sieve membranes (CMSMs) with excellent separation performance and stability appear to be a promising candidate for CO2/CH4 separation. A commercially available polyimide, P84 has been chosen as a precursor in preparing carbon membranes for this study. P84 displays a very high selectivity among the polyimides. The carbonization process was carried out at 550–800 °C under vacuum environment. WAXD and density measurements were performed to characterize the morphology of carbon membranes. The permeation properties of single and equimolar binary gas mixture through carbon membranes were measured and analyzed. The highest selectivity was attained by carbon membranes pyrolyzed at 800 °C, where the pyrolysis temperatures significantly affected the permeation properties of carbon membranes. A comparison of permeation properties among carbon membranes derived from four commercially available polyimides showed that the P84 carbon membranes exhibited the highest separation efficiency for CO2/CH4 separation. The pure gas measurement underestimated the separation efficiency of carbon membranes, due to the restricted diffusion of non-adsorbable gas by adsorbable component in binary mixture.  相似文献   

4.
In this paper the development of a new, low-cost method for the preparation of carbon honeycomb structures for gas adsorption applications is described. The method comprises the impregnation of a petroleum pitch into a cellulose-based corrugated paper. The resultant material has a high carbon content and retains the original structure of the paper, making it suitable for usage in gas flow applications. TEM and SAD studies on the carbonised material suggest the presence of two different types of carbon structures, a disorganised structure and a more organised one. The porosity of the samples was characterised by CO2 and N2 adsorption. The results indicated an appreciable narrow microporosity with a high structural stability to high temperatures (presence of the porosity at high temperatures). Finally, the molecular sieve properties of the materials were studied by CH4 and CO2 adsorption kinetics and compared favourably with those of a commercial carbon molecular sieve (CMS), indicating their promise for high temperature applications, such as catalyst supports or for gas separations.  相似文献   

5.
Abstract

H2S and CO2 are acid contaminants of natural gas and biogas, which removal have been studied using adsorption data for monocomponent and binary mixtures. However, equilibrium adsorption data for H2S?+?CO2 + CH4 mixture has not been investigated yet. In this work, H2S and CO2 partition coefficients (K) and activated carbon (AC) selectivity (S) for H2S?+?CO2 + CH4 mixture separation at high-pressure and different temperatures were determined. To reach this goal, monocomponent isotherms for H2S, CO2 and CH4 on Brazilian babassu coconut hush AC were experimentally determined at different temperatures and pressures. Then, obtained data were correlated by Langmuir and Tóth models, and multicomponent adsorption was predicted using Extended Langmuir, Extended Tóth and Ideal Adsorption Solution Theory (IAST) methods. Results indicate AC captures approximately 26?wt% of H2S or CO2. K values for CO2 and H2S reached more than 3 and 26, respectively, depending on the predictive model utilized and were higher for diluted mixtures (high CH4 content in gas phase). S values for CO2 and H2S can reach values greater than 25 for Tóth?+?IAST. Furthermore, selectivity toward H2S is approximately 5.6 times greater than CO2. The effect of temperature on multicomponent results indicate K and S values decrease as temperature increases. Therefore, results obtained herein show that is possible to separate H2S and CO2 from mixture containing CH4 using this AC as adsorbent and better separation performance was observed for low H2S and CO2 concentrations and lower temperatures.  相似文献   

6.
Palm shell based activated carbon prepared by K2CO3 activation is used as precursor in the production of carbon molecular sieve by chemical vapor deposition (CVD) method using benzene as depositing agent. The influences of deposition temperature, time, and flow rate of benzene on pore development of carbon molecular sieve (CMS) and methane (CH4) adsorption capacity were investigated. The parameters that varied are the deposition temperature range of 600 to 1000 °C, time from 5.0 to 60 min, and benzene flow rate from 3.0 to 15 mL/min. The results show that in all cases, increasing the deposition temperature, time, and flow rate of benzene result in a decrease in adsorption capacity of N2, pore volume and pore diameter of CMS. The BET surface area of CMS (approximately 1065 m2/g) and the adsorption capacity of CH4 were at a maximum value at a deposition temperature of 800 °C, time of 20 min and benzene flow rate of 6 mL/min. The product has a good selectivity for separating CH4 from carbon dioxide (CO2), nitrogen (N2), and oxygen (O2).  相似文献   

7.
Previously, a pyrolysis method was developed to control separation performance of carbon molecular sieve (CMS) membranes by doping with trace oxygen. This method involved oxygen exposure during pyrolysis to tune the selective pore windows. During the development, it was observed that oxygen concentration in inert gas, rather than the total amount of oxygen exposed controls performance. In this study, we hypothesized that mass transfer of oxygen in CMS membranes during pyrolysis is governed by chemical reaction at critical pore opening. Effect of thermal soak time, inert flow rate, and precursor thickness were conducted to test this hypothesis with 6FDA/BPDA-DAM and Matrimid® polymer precursors. Results of oxygen consumption from pyrolysis process and CO2/CH4 separation performance showed that the process is likely governed by reaction kinetics. This observation implies simplicity and easy scale-up for the oxygen “doping” method on CMS formation by tuning the oxygen concentration in the pyrolysis atmosphere.  相似文献   

8.
C/CMS composite membranes derived from poly(furfuryl alcohol) (PFA) polymerized by iodine catalyst were prepared. Gas separation performance was investigated by molecular probe study with pure gases (H2, CO2, O2, N2, and CH4) at 25 °C. The pyrolysis behaviour of PFA was studied by TG and DTG. The surface morphology of C/CMS composite membranes was observed by SEM and HRTEM. The results show a C/CMS composite membrane with uniform and defect-free thin top layer can be prepared by the PFA liquid in only one coating step. The C/CMS composite membranes have excellent gas separation properties for the gas pairs such as H2/N2, CO2/N2, O2/N2 and CO2/CH4, the permselectivities for above gas pairs in same sequence were 124.72, 12.74, 9.12 and 15.91 respectively. Compared to carbon membranes derived from PFA polymerized by acid catalyst, the carbon membranes obtained from PFA polymerized by iodine catalyst have slightly lower permselectivity, but higher permeance.  相似文献   

9.
Significant effort including field work has been devoted to develop a natural gas extraction technology from natural gas hydrate reservoirs through the injection of carbon dioxide. Natural gas hydrate is practically methane hydrate. The hypothesis is that carbon dioxide will be stored as hydrate owing to its favorable stability conditions compared to methane hydrate. Although the dynamics of the CO2/CH4 exchange process are not entirely understood it is established that the exchange process is feasible. The extent is limited but even if the CH4 recovery is optimized there is a need for a CH4/CO2 separation plant to enable a complete cyclic sequence of CO2 capture, injection and CH4 recovery. In this paper we propose an alternative paradigm to the Inject (CO2)/Exchange with (CH4)/Recover (CH4) one namely Recover (CH4) first and then Inject (CO2) for Storage.  相似文献   

10.
The adsorptive separation of CH4 from low-grade coal-bed gas can be performed at decentralized and remote coal mines, and it uses more energy- and is cost-efficient than the traditional cryogenic distillation process. Herein, we present a facile method to prepare ultramicroporous carbon granules with a narrow pore-size distribution at 0.5–0.6 nm. To our knowledge, such centered and uniform pore-size distribution in carbon granules has never been reported. The carbon granules can be directly utilized in adsorption columns without a granulation or pelletization process. The granular oil-tea-shell-derived porous carbon (GOC-2) exhibited a record-high CH4 uptake of 1.82 mmol/g and CH4/N2 selectivity of 5.8 at 1.0 bar and 298 K among carbon granules. The excellent CH4/N2 separation performances were confirmed from the results of dynamic breakthrough experiments and pressure swing adsorption simulations. This work provides a novel strategy for developing ultramicroporous carbon granules and guides the future design of efficient CH4/N2 separation adsorbents.  相似文献   

11.
A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5-3), reaction temperature (573-1473 K) and pressure (1-25 atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer-Tropsch synthesis were at temperatures higher than 1173 K for CO2/CH4 ratio being 1 at which about 4 mol of syngas (H2/CO = 1) could be produced from 2 mol of reactants with negligible amount of carbon formation. Although temperatures above 973 K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073 K and CO2:CH4:O2 = 1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.  相似文献   

12.
Molecular sieve properties of activated carbon fibers modified by cracking treatment with methane are studied herein. The effect of methane treatment on the porous texture of the samples has been studied while varying temperature and time. These materials have been evaluated for their selectivity during CO2 and CH4 separation; their uptakes have been compared with non-treated activated carbon fibers (studied previously), which were considered suitable to be used as molecular sieves. Kinetics of CO2 and CH4 uptake have also been investigated in this research. The treatment produced materials exhibiting fast kinetics and high selectivity during CO2 and CH4 separation; at the same time however, the CO2 uptake capacity was diminished.  相似文献   

13.
In this study, a hierarchal web of carbon micro and nanofibers was used as a precursor for the synthesis of a carbon molecular sieve (CMS). CMSs were prepared by thermal treatment of carbon fibers using a microwave heating device. The heating power and treatment time were optimized for the maximum performance of the prepared CMS for the separation of CO2 at low concentrations from the gaseous mixture of CO2 and air under dynamic (flow) conditions. Based on the experimental data, microwave power input of 240 W and treatment time of 15 min were found to be suitable for the maximum uptake of CO2 by CMS. Adsorption breakthrough curves were obtained at different gas flow rates and CO2 concentrations. CMSs prepared from the hierarchal web of carbon micro and nanofibers were found to be superior to those prepared from ACF. The CO2 uptake was determined to be approximately 0.88 mg/g and 10 mg/g at concentrations of 500 ppm and 5000 ppm, respectively, in air.  相似文献   

14.
Multi-walled carbon nanotubes containing oxygenated groups (O-MWCNTs) have been functionalized with ammonia to improve the adsorption capacity and selectivity of CO2/CH4 in gas adsorption process. The effects of oxygen and nitrogen containing functional groups (e.g. hydroxyl and amine), on CO2 and CH4 adsorption were studied. The ideal adsorption capacities of MWCNTs were determined using volumetric method at ambient temperature and moderate pressures (from 0.1 to 3.0 MPa). The MWCNTs containing nitrogen groups (N-MWCNTs) showed much higher adsorption capacity of CO2 and selectivity of CO2/CH4 against the O-MWCNTs at different pressures. The highest selectivity was observed at lower pressures at 298 K for the N-MWCNTs. The dynamic adsorption experiments were carried out with a feed containing one to fivefold of CO2 to CH4 in a packed bed of N-MWCNTs at 298 K and atmospheric pressure. The breakthrough curves and breakthrough times of CO2 and CH4 were determined for the mixed gases. The results indicated high efficiency of the prepared N-MWCNTs in dynamic separation of CO2 and CH4.  相似文献   

15.
Hollow carbon fiber membranes for gas separation have been successfully fabricated for the first time by a special type of precursor. This precursor is dual-layer hollow fiber composed of a polysulfone-beta zeolite (PSF-beta) mixed matrix outer layer and a Matrimid inner layer. Pure gas permeation measurements show that the resultant hollow carbon fiber has O2/N2 and CO2/CH4 selectivities of 9.3 and 150, respectively; this performance is much better than that of the hollow carbon fiber derived from single-layer Matrimid hollow fiber. Mixed gas measurements show the CO2/CH4 selectivity of 128. After pyrolysis, the PSF-beta layer in the dual-layer precursor evolves into a continuous structure of closely packed zeolite particles embedded in the PSF carbon residue. TGA spectra suggest that the possible reason for the above observation is that the PSF-beta outer layer and Matrimid inner layer has significantly changed each other’s pyrolysis dynamics and thermal degradation process.  相似文献   

16.
Adsorption of pure carbon dioxide and methane was examined on activated carbon prepared from pine cone by chemical activation with H3PO4 to determine the potential for the separation of CO2 from CH4. The prepared adsorbent was characterized by N2 adsorption-desorption, elemental analysis, FTIR, SEM and TEM. The equilibrium adsorption of CO2 and CH4 on AC was determined at 298, 308 and 318 K and pressure range of 1–16 bar. The experimental data of both gases were analyzed using Langmuir and Freundlich models. For CO2, the Langmuir isotherm presented a perfect fit, whereas the isotherm of CH4 was well described by Freundlich model. The selectivity of CO2 over CH4 by AC (CO2: CH4=50: 50, 298K, 5 bar), predicted by ideal adsorbed solution theory (IAST) model, was achieved at 1.68. These data demonstrated that pine cone-based AC prepared in this study can be successfully used in separation of CO2 from CH4.  相似文献   

17.
Carbon membranes from cellulose and metal loaded cellulose   总被引:1,自引:0,他引:1  
Jon Arvid Lie 《Carbon》2005,43(12):2600-2607
The focus of this work was to find a low-cost precursor for carbon molecular sieve (CMS) membranes, and a simple way of producing them. In addition, several ways of modifying a carbon material are described. The modification method used in this study was metal doping of carbon. CMS membranes were formed by vacuum carbonization of cellulose and metal loaded cellulose. Metal additives include oxides of Ca, Mg, Fe(III) and Si, and nitrates of Ag, Cu and Fe(III).The carbon membrane containing Fe-nitrate has promising separation performance for the gas pairs O2/N2 and CO2/CH4. Carbon containing nitrates of Cu or Ag show high selectivity, but reduced O2 and CO2 permeability compared to carbon with Fe-nitrate. Element analysis indicates that Cu migrates to the carbon surface, creating an extra layer resistance to gas transport. A silver mirror is also seen on the surface of Ag-nitrate-containing carbon. However, the Ag- and Cu-containing membranes show a high H2 permeability. Adding metal oxides makes the carbon membranes retard the transport of easily condensable gases (e.g. CO2). This can be exploited for enhanced H2/CO2 separation efficiency.  相似文献   

18.
Ordered mesoporous silica/carbon composite membranes with a high CO2 permeability and selectivity were designed and prepared by incorporating SBA-15 or MCM-48 particles into polymeric precursors followed by heat treatment. The as-made composite membranes were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and N2 adsorption, of which the gas separation performance in terms of gas permeability and selectivity were evaluated using the single gas (CO2, N2, CH4) and gas mixtures (CO2/N2 and CO2/CH4, 50/50 mol.%). In comparison to the pure carbon membranes and microporous zeolite/C composite membranes, the as-made mesoporous silica/C composite membranes, and the MCM-48/C composite membrane in particular, exhibit an outstanding CO2 gas permeability and selectivity for the separation of CO2/CH4 and CO2/N2 gas pairs owing to the smaller gas diffusive resistance through the membrane and additional gas permeation channels created by the incorporation of mesoporous silicas in carbon membrane matrix. The channel shape and dimension of mesoporous silicas are key parameters for governing the gas permeability of the as-made composite membranes. The gas separation mechanism and the functions of porous materials incorporated inside the composite membranes are addressed.  相似文献   

19.
Effect of confinement and surface functionalization in carbon nanotubes (CNTs) on the competitive adsorption of a binary CO2/CH4 mixture has been investigated by grand canonical Monte Carlo simulations. Adsorption using CNTs with different functionalization arrangements, different diameters, different functionalization degrees, and different functional groups, such as –COOH, –CO, –OH, –CH3, is investigated. Effects of (a) the pore textural properties, such as pore size and accessible surface area, and (b) the gas–adsorbent interaction, especially the electrostatic interaction, are discussed. From these results, we discuss the impact that variables such as confinement and surface functionalization have on the performance for CO2 separation.  相似文献   

20.
Abstract

Pure component adsorption equilibrium of CH4 and CO2 on activated carbon have been studied at three different temperatures, 298, 323, and 348?K within a pressure range of 10–2000?kPa. Binary adsorption equilibrium isotherm was described using extended Sips equation and ideal adsorbed solution theory (IAST) model. Experimental breakthrough curves of CO2/CH4 (40:60 in a molar basis) were performed at four different pressures (300, 600, 1200, and 1800?kPa). The experimental results of binary isotherms and breakthrough curves have been compared to the predicted simulation data in order to evaluate the best isotherm model for this scenario. The IAST and Sips models described significantly different results for each adsorbed component when higher pressures are set. These different results cause a significant discrepancy in the estimation of the equilibrium selectivity. Simulated and experimental equilibrium selectivity data provided by IAST presented values of around 4, for CO2/CH4, and extended Sips presented values of around 2. Also, simulated breakthrough curves showed that IAST fits better to the experimental data at higher pressures. According to the simulations, in a binary mixture at total pressure over 800?kPa, extended Sips model underestimated significantly the CO2 adsorbed amount and overestimated the CH4 adsorbed amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号