首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 °C and 700 °C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 °C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H2O2/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 °C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed.  相似文献   

2.
Reaction feed was prepared by dissolving dibenzothiophene (DBT), which was selected as a model organosulfur compound in diesel fuels, in n-octane. The oxidant was a 30 wt-% aqueous solution of hydrogen peroxide. Catalytic performance of the activated carbons with saturation adsorption of DBT was investigated in the presence of formic acid. In addition, the effects of activated carbon dosage, formic acid concentration, initial concentration of hydrogen peroxide, initial concentration of DBT and reaction temperature on the oxidation of DBT were investigated. Experimental results indicated that performic acid and the hydroxyl radicals produced are coupled to oxidize DBT with a conversion ratio of 100%. Catalytic performance of the combination of activated carbon and formic acid is higher than that of only formic acid. The concentration of formic acid, activated carbon dosage, initial concentration of hydrogen peroxide and reaction temperature affect the oxidative removal of DBT. The higher the initial concentration of DBT in the n-octane solution, the more difficult the deep desulfurization by oxidation is. Translated from Journal of Chemical Engineering of Chinese Universities, 2006, 20(4): 616–621 [译自: 高校化学工程学报]  相似文献   

3.
An experimental investigation was conducted on the oxidative desulfurization of model sulfur compounds such as dibenzothiophene and benzothiophene in toluene as a simulated light fuel oil with a mixture of hydrogen peroxide as the oxidant and various acids as the catalyst. The influences of various parameters including reaction temperature (T), acid to sulfur molar ratio (Acid/S), oxidant to sulfur molar ratio (O/S), type of acid, and the presence of sodium tungstate and commercial activated carbon as a co-catalyst on the fractional conversion of the model sulfur compounds were investigated. The experimental data obtained were used to determine the reaction rate constant of the model sulfur compounds and the corresponding activation energy. Moreover, the adsorption of model sulfur compounds on the commercial activated carbons supplied by Jacobi Co. (Sweden, AquaSorb 101) was studied and the effects of different parameters such as temperature, and various chemical treatments on the adsorption of the sulfur compounds were investigated. Furthermore, the oxidative desulfurization of untreated kerosene with the total sulfur content of 1700 ppmw produced by an Iranian refining company (Isfahan refinery) was successfully investigated. These experiments were performed using formic acid as the catalyst and hydrogen peroxide as the oxidant at the mild operating conditions of T = 50 °C, O/S = 5, and the Acid/S = 10. It was realized that about 87% of the total sulfur content of untreated kerosene could be removed after 30 min oxidation followed by liquid–liquid extraction.  相似文献   

4.
Shuzhi Liu  Baochen Cui  Lanlan Sun 《Fuel》2008,87(3):422-428
Fe (VI) compound, such as K2FeO4, is a powerful oxidizing agent. Its oxidative potential is higher than KMnO4, O3 and Cl2. Oxidation activity of Fe (VI) compounds can be adjusted by modifying their structure and pH value of media. The reduction of Fe (VI), differing from Cr and Mn, results in a relatively non-toxic by-product Fe (III) compounds, which suggests that Fe (VI) compound is an environmentally friendly oxidant. Oxidation of model sulfur compound and diesel oil by K2FeO4 in water-phase, in organic acid and in the presence of phase-transfer catalysts is investigated, respectively. The results show that the activity of oxidation of benzothiophene (BT) and dibenzothiophene (DBT) is low in water-phase, even adding phase-transfer catalyst to the system, because K2FeO4 reacts rapidly with water to form brown Fe(OH)3 to lose ability of oxidation of organic sulfur compounds. The activity of oxidation of the BT and DBT increases markedly in acetic acid. Moreover, the addition of the solid catalyst to the acetic acid medium promotes very remarkably oxidation of organic sulfur compounds. Conversions of the DBT and BT are 98.4% and 70.1%, respectively, under the condition of room temperature, atmospheric pressure, acetic acid/oil (v/v) = 1.0, K2FeO4/S (mol/mol) = 1.0 and catalyst/K2FeO4 (mol/mol) = 1.0. Under the same condition, diesel oil is oxidized, followed by furfural extraction, the results display sulfur removal rate is 96.7% and sulfur content in diesel oil reduces from 457 ppm to 15.1 ppm.  相似文献   

5.
Adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from simulated diesel fuel with 20 ppmw total concentration of sulfur was investigated on polymer-derived carbon containing various amounts of oxygen and sulfur incorporated to the surface. Initial and exhausted carbons were characterized using adsorption of nitrogen, thermal analysis, potentiometric titration, XPS, mass spectroscopy and elemental analysis. Selectivities for DBT and DMDBT adsorption were calculated with reference to naphthalene. It was found that both the capacity and selectivity for DBT and DMDBT removal from model diesel fuel were affected by the content and arrangement of heteroatoms. Although both oxygen and sulfur containing groups enhance the capacity, the enhancing effects of surface chemistry were more pronounced on the carbon with sulfur incorporated to its matrix. This is linked to sulfur–sulfur interactions.  相似文献   

6.
柴油催化氧化深度脱硫研究   总被引:10,自引:0,他引:10  
以二苯并噻吩(DBT)代表柴油中的有机硫化合物,将其溶解于正辛烷配成反应原料,以30%过氧化氢溶液为氧化剂,考察了饱和吸附DBT活性炭在甲酸存在下的催化性能,并且研究了活性炭加量、甲酸浓度、过氧化氢初始浓度、DBT初始浓度及反应温度对DBT氧化的影响.实验结果表明: H2O2-HCOOH-活性炭三元体系产生的羟基自由基和过氧甲酸能将模型有机硫化合物氧化,二苯并噻吩的氧化脱硫率可达到100%;活性炭-甲酸的催化氧化性能明显优于单纯使用甲酸.甲酸浓度、活性炭加量、过氧化氢初始浓度及反应温度对二苯并噻吩的氧化脱除均有影响.随着DBT初始浓度的增加,氧化深度脱硫难度增加.  相似文献   

7.
Jia Guo  Ye Luo  Ru-an Chi  Xiu-ting Bao 《Carbon》2007,45(2):330-336
Adsorption of hydrogen sulphide (H2S) onto activated carbons derived from oil palm shell, an abundant solid waste from palm oil processing mills, by thermal or chemical activation method was investigated in this paper. Dynamic adsorption in a fixed bed configuration showed that the palm-shell activated carbons prepared by chemical activation (KOH or H2SO4 impregnation) performed better than the palm-shell activated carbon by thermal activation and a coconut-shell-based commercial activated carbon. Static equilibrium adsorption studies confirmed this experimental result. An intra-particle Knudsen diffusion model based on a Freundlich isotherm was developed for predicting the amount of H2S adsorbed. Desorption tests at the same temperature as adsorption (298 K) and at an elevated temperature (473 K) were carried out to confirm the occurrence of chemisorption and oxidation of H2S on the activated carbon. Surface chemistries of the palm-shell activated carbons were characterized by Fourier transform infrared spectroscopy and Boehm titration. It was found that uptaking H2S onto the palm-shell activated carbons was due to different mechanisms, e.g. physisorption, chemisorption and/or H2S oxidation, depending on the activation agent and activation method.  相似文献   

8.
Mykola Seredych 《Carbon》2009,47(10):2491-14104
Two synthetic, polymer-derived carbons, and two commercial carbons were investigated as adsorbents of dibenzothiophene and 4,6-dimethyldibenzothiophene from simulated diesel fuel in dynamic conditions. The total concentration of sulfur was 20 ppm. The surface features of the carbons were evaluated using adsorption of nitrogen, potentiometric titration, Boehm titration, thermal analysis and FTIR. The polymer-derived carbons outperformed the commercial micro- and micro/mesoporous carbons from the point of view of adsorption capacity and selectivity. The latter was evaluated based on the adsorption of naphthalene, which was also present in the fuel used. It was found that the presence of arenes did not affect significantly the capacity measured. The results suggest that the amount adsorbed is mainly governed by the volume of micropores, where dispersive interactions are predominant. Acidic groups located in larger pores are also important to attract additional molecules DBT and 4,6-DMDBT via specific interactions with the progress of adsorption. These groups may also contribute to the reactive adsorption leading to oxidation of DBT and 4,6-DMDBT.  相似文献   

9.
Commercial wood-based activated carbon was treated with hydrogen sulfide at 650 and 800 °C to introduce sulfur to the carbon matrix. On the initial and S-doped samples adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from model diesel fuel with equal molar concentrations of these species was measured at room temperature. The amount adsorbed increased with an increase in the content of sulfur and in the volume of pores similar in sizes to the adsorbates molecules. This increase was attributed to the dispersive interactions in small pores that are enhanced by the presence of sulfur. Then the carbons with adsorbed DBT and DMDBT were exposed to UV, visible light and stored in dark. On the surface of sulfur-doped carbons an extensive oxidation of both DBT and DMDBT species was detected upon exposure either in UV or visible light. The photoactivity was linked to the effect of sulfur functionalities. That sulfur, besides decreasing the energy gap, increases the ability of carbons to adsorb oxygen and its reduction to active superoxygen ion. Another important factor is the affinity of carbons to retain water, which is the source of active radicals formed upon absorption of photons.  相似文献   

10.
C.O. Ania 《Carbon》2006,44(12):2404-2412
To improve the desulfurization capability of activated carbons, new metal-loaded carbon-based sorbents containing sodium, cobalt, copper, and silver highly dispersed within the carbon matrix were prepared and tested at room temperature for dibenzothiophene (DBT) adsorption. The content of metals can be controlled by selective washing. The new adsorbents showed good adsorption capacities and selectivity towards DBT. The metals incorporated to the surface act not only as active sites for selective adsorption of sulfur-containing aromatic compounds, but also as structural stabilizers of the carbon materials, and as catalyst initiators in reactive adsorption. Depending on the reactivity of the metal used, the adsorption capacity of the activated carbons significantly varied. Cobalt and copper loaded carbons showed the highest uptakes, due to not-well defined catalytic synergetic effects. Besides, the presence of sulfur compounds in the structure of the carbon as a result of the sulfonic moiety of the precursor, results in sulfur-sulfur specific interactions leading to an enhancement in the adsorption capacity for DBT removal.  相似文献   

11.
以氧气作氧化剂,甲酸作催化剂,N-甲基吡咯烷酮(NMP)作萃取剂,采用催化氧化反应与溶剂萃取相结合的方法对催化裂化柴油进行了氧化萃取脱硫实验。通过单因素实验考察了催化剂用量、催化氧化温度、时间、氧气压力及萃取剂的用量等对催化裂化柴油硫质量分数的影响。通过实验得出最适宜的脱硫条件为:反应温度80℃,反应时间90 min,充氧压力0.6 MPa,V(催化剂)∶V(柴油)=10%。经催化氧化,柴油硫质量分数可从1 694.2μg/g降到190.8μg/g,脱硫率达到88.7%;在V(萃取剂)∶V(柴油)=1.0和室温条件下,用NMP萃取3次,柴油硫质量分数为37.5μg/g,小于50μg/g,达到欧Ⅳ排放标准的要求。  相似文献   

12.
综述了活性炭作为吸附剂和催化剂在柴油深度脱硫方面应用的新进展。通过表面热氧化和负载金属离子对活性炭表面进行化学性能改性,有效提高对柴油中噻吩类硫化物的吸附性能。活性炭作为催化剂,能有效催化过氧化氢和氧化柴油中的噻吩类硫化物而达到催化氧化脱硫。活性炭在柴油深度脱硫方面具有广阔的应用前景,但要真正实现其在脱硫上的工业化应用,尚需加强其表面化学性能改性、再生、吸附和催化氧化机理等方面的研究。  相似文献   

13.
Hydrogen adsorption measurements have been carried out at different temperatures (298 K and 77 K) and high pressure on a series of chemically activated carbons with a wide range of porosities and also on other types of carbon materials, such as activated carbon fibers, carbon nanotubes and carbon nanofibers. This paper provides a useful interpretation of hydrogen adsorption data according to the porosity of the materials and to the adsorption conditions, using the fundamentals of adsorption. At 298 K, the hydrogen adsorption capacity depends on both the micropore volume and the micropore size distribution. Values of hydrogen adsorption capacities at 298 K of 1.2 wt.% and 2.7 wt.% have been obtained at 20 MPa and 50 MPa, respectively, for a chemically activated carbon. At 77 K, hydrogen adsorption depends on the surface area and the total micropore volume of the activated carbon. Hydrogen adsorption capacity of 5.6 wt.% at 4 MPa and 77 K have been reached by a chemically activated carbon. The total hydrogen storage on the best activated carbon at 298 K is 16.7 g H2/l and 37.2 g H2/l at 20 MPa and 50 MPa, respectively (which correspond to 3.2 wt.% and 6.8 wt.%, excluding the tank weight) and 38.8 g H2/l at 77 K and 4 MPa (8 wt.% excluding the tank weight).  相似文献   

14.
Yahia A. Alhamed 《Fuel》2009,88(1):87-14104
Samples of granular activated carbon (GAC) were produced from dates’ stones by chemical activation using ZnCl2 as an activator. Textural characteristics of GAC were determined by nitrogen adsorption at 77 K along with application of BET equation (Brunauer, Emmett and Teller) for determination of surface area. Pore size distribution and pore volumes were computed from N2 adsorption data by applying the nonlinear density function theory (NLDFT). FT-IR spectra of GAC samples were also obtained to determine the functional groups present on the surface. GAC samples were used in desulfurization of a model diesel fuel composed of n-C10H34 and dibenzothiophene (DBT) as sulfur containing compound. More than 86% of DBT is adsorbed in the first 3 h which gradually increases to 92.6% in 48 h and no more sulfur is removed thereafter. The adsorption data were fitted to both Freundlich and Langmuir equations to estimate the adsorption parameters. The optimum operating conditions for GAC preparation based on high adsorption capacity are Tcarb = 700 °C, θcarb = 3.0 h and R = 0.5. Moreover, the efficiency of sulfur removal by GAC is reduced when applied to commercial diesel fuel. Finally, linear regression of experimental data was able to predict the critical pore diameter for DBT adsorption (0.8 nm) and validating the reported impact of average pore diameter of activated carbon on the adsorption capacity.  相似文献   

15.
Jie Zhang  Yunshan Ge 《Fuel》2009,88(3):504-6689
To study the effects of fuel sulfur content on the characteristics of diesel particle emitted from a typical engine used in China, two types of diesel fuel with sulfur content of 30 ppm and 500 ppm were used in this engine dynamometer test under six operation conditions corresponding to 20%, 50% and 80% load at 1400 rpm and 2300 rpm engine speeds, respectively. Gaseous pollutants and particulate matter (PM) emissions were sampled with AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp), respectively. More specifically, the PM mass, total carbon (TC), organic carbon (OC), elemental carbon (EC) and water-soluble ion distribution were also measured. Compared with high sulfur diesel, the application of low sulfur diesel can lower fuel-based PM emissions by 9.2-56.6%. At 1400 rpm, the low sulfur diesel decreased both OC and EC by 5-34% and about 20%; while at 2300 rpm, the low sulfur fuel decreased OC by 33-57% and increased EC emission, resulting in a lower OC/EC ratio. The evidence implicating that OC oxidation was promoted by low sulfur diesel, but the effect on EC oxidation was dependent on engine speed. The linear regression has been conducted between TC and PM10, and the slopes were 0.88 and 0.80 for low sulfur diesel and high sulfur one, respectively. Higher sulfate content was detected in the 0.13 μm particles when using the high sulfur diesel, but the percentage of sulfate was 0.9% for PM10 from both diesel fuels. Comparing with that of 500 ppm, EC increased sharply to a maximum of 114% in particles of 0.13 μm when using 30 ppm sulfur diesel at 2300 rpm.  相似文献   

16.
李会鹏  赵华 《化工科技》2011,19(3):10-12
以过氧化氢为氧化剂,甲酸为催化剂,Al2O3为吸附剂,研究柴油氧化吸附脱硫工艺条件。实验结果表明,在n(氧)∶n(硫)=10.0,氧化时间为40min,氧化温度为70℃,V(吸附剂)∶V(油)=1∶5.5,吸附时间为30min,吸附温度为40℃时,吸附柴油的脱硫率为97.32%,柴油w(硫)=20.5μg/g,达到欧洲Ⅳ柴油标准:w(总硫)〈50μg/g。  相似文献   

17.
The catalytic oxidation of Fe(II) species in aqueous solution by activated carbons with different degrees of surface oxidation is described. The parent activated carbon was oxidized with aqueous solutions of nitric acid or hydrogen peroxide, and submitted to thermal treatment at 373, 523 and 773 K. The activated carbons prepared were characterized by N2 adsorption and temperature-programmed desorption, and their catalytic behavior was determined by measuring the oxidation rate of Fe(II) to Fe(III) and the generation of hydrogen peroxide. Catalytic activity is a function of the nature of oxygen surface groups generated by oxidation.  相似文献   

18.
《Carbon》2002,40(15):2827-2834
The catalytic oxidation of Fe(II) species in aqueous solution by activated carbons with different degrees of surface oxidation is described. The parent activated carbon was oxidized with aqueous solutions of nitric acid or hydrogen peroxide, and submitted to thermal treatment at 373, 523 and 773 K. The activated carbons prepared were characterized by N2 adsorption and temperature-programmed desorption, and their catalytic behavior was determined by measuring the oxidation rate of Fe(II) to Fe(III) and the generation of hydrogen peroxide. Catalytic activity is a function of the nature of oxygen surface groups generated by oxidation.  相似文献   

19.
Adsorptive removal of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from model diesel fuel with 20 ppmw total concentration of sulfur was investigated on polymer-derived carbons with incorporated heteroatoms of oxygen, sulfur and phosphorus. The materials before and after exposure to model diesel fuel were characterized using adsorption of nitrogen, thermal analysis, potentiometric titration, XPS and elemental analysis. The selectivities for DBT and DMDBT adsorption were calculated with reference to naphthalene. The results indicated that the presence of phosphorus, especially in the form of pyrophosphates and P2O5, increases the capacity and selectivity for removal of dibenzothiophenes. It also affects the adsorption mechanism. Phosphorus suppresses oxidation reactions of DBT and DMDBT. Owing to a possible location of bulky phosphorus groups in pore with sizes between 1 and 3 nm thiophenic molecules are strongly adsorbed there via dispersive forces. Acidic environment also enhances adsorption via acid–base interactions. Physical adsorption mechanism and stability of surface make these carbons attractive candidates for thermal regeneration.  相似文献   

20.
Y.H Li  B.K Gullett 《Fuel》2003,82(4):451-457
The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury (Hg0) was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidation (693 K), and nitric acid (6N HNO3) treatment of two activated carbons (BPL, WPL) were conducted to vary their surface oxygen functional groups. Adsorption experiments of Hg0 by the activated carbons were conducted using a fixed-bed reactor at a temperature of 398 K and under N2 atmosphere. The pore structures of the samples were characterized by N2 and carbon dioxide (CO2) adsorption. Temperature-programmed desorption (TPD) and base-acid titration experiments were conducted to determine the chemical characteristics of the carbon samples. Characterization of the physical and chemical properties of activated carbons in relation to their Hg0 adsorption capacity provides important mechanistic information on Hg0 adsorption. Results suggest that oxygen surface complexes, possibly lactone and carbonyl groups, are the active sites for Hg0 capture. The carbons that have a lower carbon monoxide (CO)/CO2 ratio and a low phenol group concentration tend to have a higher Hg0 adsorption capacity, suggesting that phenol groups may inhibit Hg0 adsorption. The high Hg0 adsorption capacity of a carbon sample is also found to be associated with a low ratio of the phenol/carbonyl groups. A possible Hg0 adsorption mechanism, which is likely to involve an electron transfer process during Hg0 adsorption in which the carbon surfaces may act as an electrode for Hg0 oxidation, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号