首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pyrolysis product derived from Sasol-Lurgi gasifier pitch was activated using different proportions of KOH. The increase of the amount of KOH used for activation caused the activation degree of the carbons to increase very significantly. The activated carbons obtained using lower amounts of KOH were mainly microporous, while the amount of mesopores developed in the samples progressively increased for the carbons activated with higher proportions of KOH. The gravimetric specific capacitance of samples obtained with (2:1), (3:1) and (5:1) KOH to carbon ratio were rather similar at low current densities (∼400 F/g at low current densities), despite the significant differences observed in their textural characteristics. Supercapacitors built with the activated carbons obtained with (2:1) and (3:1) KOH to carbon ratio yielded the highest volumetric capacitance (higher than 200 F/cm3 at low current densities), while the most activated sample yielded the lowest values, due to the significant reduction in density caused by activation. The high values of capacitance observed result from the combination of two mechanisms of energy storage: double layer formation and pseudocapacitance.  相似文献   

2.
SWNT/PAN composite film-based supercapacitors   总被引:1,自引:0,他引:1  
Tao Liu  Satish Kumar  Robert H. Hauge 《Carbon》2003,41(12):2440-2442
  相似文献   

3.
L.W. Wang  R.Z. Wang  Z.S. Lu  C.J. Chen  K. Wang  J.Y. Wu 《Carbon》2006,44(13):2671-2680
The available adsorption working pairs applied to adsorption refrigeration system, which utilize activated carbon as adsorbent, are mainly activated carbon-methanol, activated carbon-ammonia, and composite adsorbent-ammonia. The adsorption properties and refrigeration application of these three types of adsorption working pairs are investigated. For the physical adsorbents, consolidated activated carbon showed best heat transfer performance, and activated carbon-methanol showed the best adsorption property because of the large refrigerant amount that can be adsorbed. For the composite adsorbents, the consolidated composite adsorbent with mass ratio of 4:1 between CaCl2 and activated carbon, showed the highest cooling density when compared to the granular composite adsorbent and to the merely chemical adsorbent. The physical adsorption icemaker that employs consolidated activated carbon-methanol as working pair had the optimum coefficient of refrigeration performance (COP), volume cooling power density (SCPv) and specific cooling power per kilogram adsorbent (SCP) of 0.125, 9.25 kW/m3 and 32.6 W/kg, respectively. The composite adsorption system that employs the consolidated composite adsorbent had a maximum COP, SCPv and SCP of 0.35, 52.68 kW/m3 and 493.2 W/kg, respectively, for ice making mode. These results are improved by 1.8, 4.7 and 14 times, respectively, when compared to the results of the physical adsorption icemaker.  相似文献   

4.
This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.  相似文献   

5.
Jae Hong Kim  Sang Bok Ma 《Carbon》2006,44(10):1963-1968
Carbon nanotube (CNT) film electrodes were fabricated by a novel process involving the electrostatic spray deposition (ESD) of a CNT solution. Acid treated CNTs were dispersed in an aqueous solvent through sonication and then the CNT solution was electrostatically sprayed onto a metallic substrate by the ESD method. The CNT film electrodes showed well-entangled and interconnected porous structures with good adherence to the substrate. A specific capacitance of 108 F/g was achieved for the electrodes in 1 M H2SO4. In addition, the CNT film electrode showed good high rate capability.  相似文献   

6.
Predominant mesopores were added to pitch-based activated carbon fiber (0.7 nm of average pore width) by Ca(NO3)2-impregnated chemical activation. The influence of the concentration of calcium nitrate solution, reactivation temperature and reactivation time on the mesopore development of ACF were examined. The development of mesopores in the reactivated ACF was evidenced by an explicit hysteresis of N2 adsorption isotherm at 77 K. The pore volume ratio of mesopores to micropores reached to 3-4. The addition of predominant mesopores to ACF enhanced the liquid phase adsorption rate of methylene blue by more than 10 times.  相似文献   

7.
K. Jurewicz  K. Babe?  S. Delpeux 《Carbon》2006,44(12):2368-2375
Catalytic multi-walled carbon nanotubes were modified by KOH activation at 800 °C and/or ammoxidation at 350 °C, and the effect of these treatments on the physicochemical and electrochemical properties was investigated. Whereas texture is moderately changed by ammoxidation, the chemical composition is significantly modified due to the formation of various nitrogen containing groups. The influence of nitrogenated functionality (pyridine, pyridone, NH) on charge accumulation is considered in full electrochemical capacitors, as well as in positive and negative electrodes separately, using acidic (4 mol L−1 H2SO4) and alkaline (7 mol L−1 KOH) electrolytes. The presence of nitrogen in the carbon network, especially in the form of pyridone/pyrrolic (N5) and/or pyridine (N6) groups, affects the electron density and enhances the charge affinity of the carbon material. It seems that the nitrogen groups improve particularly the capacitance performance of the negative electrode operating in alkaline medium. Besides the nitrogenated groups, the oxygenated functionality plays also an important role for the ammoxidized nanotubes. Generally, a few-fold increase of capacitance was observed in the N-enriched carbon nanotubular samples. Apart of this capacitance improvement, the presence of nitrogen in the carbon network limits significantly the leakage current and diminishes the self-discharge of supercapacitors.  相似文献   

8.
O. Barbieri  A. Herzog 《Carbon》2005,43(6):1303-1310
A large specific surface area (SSA) of carbon materials used for electrochemical double layer capacitors (EDLC) is the most important parameter leading to a large gravimetric capacitance (Cg). However, for a SSA determined with the differential functional theory (DFT) model above a value of 1200 m2/g the plot of Cg versus SDFT exhibits a plateau. We suggest that this limitation of Cg can be ascribed to a space constriction for charge accommodation inside the pore walls. As a consequence, the use of extremely high surface area carbons for EDLCs may be unprofitable.  相似文献   

9.
Different types of redox doping of C60@SWCNT were monitored by Raman spectroscopy. Chemical doping was carried out by gaseous potassium, liquid potassium amalgam and gaseous fluorine diluted with argon. Electrochemical doping was investigated by in situ Raman spectroelectrochemistry in LiClO4 + acetonitrile solution and in 1-butyl-3-methylimidazolium tetrafluoroborate (ionic liquid). The peapods exhibit characteristic and complex feedback to chemical as well as to electrochemical doping. In contrast to chemical p-doping by F2, the Raman scattering of intratubular fullerene is selectively enhanced during electrochemical p-doping. Similar selective enhancement is traced at chemical n-doping with gaseous potassium. Doping by gaseous potassium causes deep reduction of intratubular C60 to , which is not fully re-oxidizable upon contact to air. On the other hand, doping with liquid potassium amalgam causes reduction of intratubular C60 to , and complete re-oxidation to neutral fullerene occurs spontaneously upon contact to air. In general, the doping chemistry of peapods is significantly dependent on the applied redox potential, charge-compensating counterions and on the actual doping technique used. A critical review of the current data is provided.  相似文献   

10.
Oxidation kinetics and mechanisms of a 2D-C/C composite   总被引:1,自引:0,他引:1  
The isothermal oxidation of a 2D-C/C composite was investigated by thermogravimetric analysis in the temperature range of 745–900 °C and SEM observation. The model-free, model-fitting and reduced-time plot methods were applied to oxidation kinetic analysis. SEM investigation shows that oxidation starts from the fiber/matrix interfaces, and matrix carbon is oxidized much more rapidly than the carbon fibers. According to the model-free curve, the oxidation temperatures are divided into two ranges: lower temperatures (745–800 °C) and higher temperatures (850–900 °C). The apparent activation energy and oxidation controlling mechanisms in different temperature ranges are obtained. Furthermore, the trend of the oxidation rate with weight loss or temperature ranges is discussed by the combination of microstructure and mechanisms of oxidation of 2D-C/C composite.  相似文献   

11.
Yi Li  Jingcheng Hao 《Carbon》2006,44(13):2664-2670
The electrochemical behavior of glassy carbon (GC) electrodes coated with multi-walled carbon nanotube (MWCNT)/surfactant films was studied in an ionic liquid and a phosphate buffer solution (pH = 6.86), using cyclic voltammetry. The dispersion of MWCNTs in different media was investigated by scanning and transmission electron microscopy. Cast films of MWCNT/zwitterionic dodecyldimethylamine oxide on a GC electrode show a typical redox couple in phosphate buffer solution, which is better than that of MWCNT/anionic sodium dodecyl sulfate and cationic alkyltrimethylammonium bromide. However in the ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), the GC electrode modified by MWCNT/cationic surfactant films shows a well-defined irreversible reduction of MWCNTs. The cyclic voltammograms clearly show that the surfactant hydrophilic group plays an important role in the electrochemical behavior of the MWCNTs. The electrolytes also have an important effect. In an ionic liquid, the strong binding of the ionic liquid cations with the MWCNTs may change the structure of the modified films and lead to changes of electrochemical behavior.  相似文献   

12.
ABSTRACT: The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon nanotube composite electrode exhibited the best electroanalytical parameters through applying preconcentration/differential-pulsed voltammetry scheme.  相似文献   

13.
Layer-by-layer (LBL) multilayers of oxidized single-walled carbon nanotubes (SWCNTs) and poly(octylviologen) derivative (POV) have been assembled on gold electrode surfaces. The assembling process was characterized by quartz crystal microbalance (QCM) and electrochemical measurements. The average mass change was about 0.726 and 0.381 μg for each assembly of SWCNTs and POV, respectively. Cyclic voltammograms of the LBL multilayer modified electrodes showed well-reversible redox waves centered at about −640 mV vs Ag/AgCl, corresponding to the normal redox reaction of viologens. These LBL multilayers were very stable in the air and 1 mol/l KCl electrolyte solution. The results of QCM, cyclic voltammograms and chronocoulomograms of the multilayer modified Au electrodes indicated that the oxidized SWCNTs could not only support the formation of stable multilayers but also act as an electron mediator between viologens and electrodes.  相似文献   

14.
Magnetite nanoparticles were supported on carbon paste electrode and characterized by low scan rate voltammetry and electrochemical impedance spectroscopy (EIS) to obtain mechanistic information related to its oxidation and reduction in acid media.The voltammograms showed only one reduction and one oxidation peak for the supported magnetite, which were attributed to formation of ferrous ion and ferric oxide, respectively. Both peaks are fairly wide, indicating complex mechanisms.Using EIS, a mechanism showing up to three time constants, capacitive all of them, was evidenced, both in anodic and cathodic domain. These were attributed to charge transfer at the highest frequencies, adsorption of generated species at intermediate frequencies, and proton adsorption at low frequencies. Discussion about the nature of the adsorbed species and the concerned mechanism for each domain is developed.  相似文献   

15.
Adsorption process is considered to be the most promising alternative for the CO2 capture to the traditional energy-intensive amine absorption process, and the development of feasible and efficient CO2 adsorbents is still a challenge. In this work, the NiO@USY (ultrastable Y) composites with different NiO loadings were prepared for the CO2 adsorption using Ni(NO3)2 as the precursor. The composites were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption–desorption test, scanning electron microscopy analysis, and thermogravimetric analysis, and were evaluated for the CO2 adsorption capacity, CO2/N2 adsorption selectivity and CO2 cycle adsorption capacity. The characterization results show that after the activation at 423 K, the Ni(NO3)2 species were well dispersed into the surface of zeolite USY, and after the further activation at 823 K, Ni(NO3)2 could be converted into highly dispersed NiO. The adsorption results show that the presence of the active component NiO plays an important role in improving the CO2 adsorption performance, and the NiO@USY composite with a NiO loading of 1.5 mmol·g-1 USY support displays a high adsorption capacity and adsorption selectivity for CO2, and shows a good cycle stability. In addition, the Clausius–Clapeyron equation was used to evaluate the isosteric heat of adsorption of CO2 on the NiO(1.5)@USY composite, and the heat of adsorption was 17.39–38.34 kJ·mol-1.  相似文献   

16.
17.
Xiaodong Wu  Xuejie Huang 《Carbon》2004,42(10):1965-1972
Carbon-alloy composites were prepared by coating carbon materials with different surfaces with Sn, Sb or SnSb. The SnSb-hard carbon spherule (HCS) composite electrode shows the best cycling performance. The matching of crystalline parameters between SnSb and the carbon ensures a good dispersion of SnSb alloy on the surface. The high density of the nucleation centers on the HCS surface leads to a small SnSb crystallite size. Open pores on the surface of HCS, into which the alloy crystals are allowed to grow, act as pinning centers, which further stabilize the composite. These three factors are supposed to be responsible for the best cyclic performance of SnSb-HCS composite. The latter two factors also result in a large BET surface area, which leads to a large initial irreversible capacity loss, because more solid electrolyte interface film is formed. It seems that the best cyclic performance and the highest initial efficiency are paradoxical in the SnSb-carbon composite. Further surface modification should be conducted to obtain better electrode materials.  相似文献   

18.
19.
Activated carbon fibers (ACFs) prepared from petroleum isotropic pitch and the same containing silver and cobalt nitrate, cobalt and palladium acetylacetonates, as well as mixtures of two salts with a total metal or metal mixture content of 1 wt% have been studied. The processing parameters are summarized for activated carbon fibers containing individual metals and metal mixtures. The results suggest that the generation of metal-containing particles and the formation of pore structure depend on many different factors including the composition of the metal and pitch precursors, the interaction of the metal and pitch precursors during the fiber production process, and the interaction between the two metal precursors when more than one metal salt is used. The addition of silver and cobalt in the form of nitrate salts enlarges the micropores and generates small mesopores with a narrow range of sizes. The addition of palladium as an acetylacetonate salt leads to the formation of both small micropores and larger mesopores. The cobalt additive as an acetylacetonate salt catalyzes the activation process, creating large mesopores and macropores. Mixing of two different metal precursors affects the particle composition and size. This, in turn, controls the pore structure of the final activated fibers. During activation, the two metal precursors can act independently (Ag/Co mixture). However, in other cases their effect can be additive (Co/Pd mixture), or even synergistic (Ag/Pd mixture).  相似文献   

20.
Carbon/iron composites were prepared from waste cation exchange resin by NaOH activation. The BET surface areas were over 1200 m2 g−1. The presence of iron led to the formation of new mesopores and macropores. Activation temperature had a significant impact on the pore size distributions, crystal structures, and magnetic properties of the carbon composites, and the magnetic properties of the composites were related to their crystal structures. The composite synthesized at 800 °C (800ACS-1) could effectively remove diethyl phthalate, bisphenol A, and malachite green from aqueous solutions. 800ACS-1 also exhibited high stability over a wide pH range of 4–11.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号