首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electric arc-discharge single-wall carbon nanotubes are annealed between 1600 and 2800 °C under argon flow. Their stability and evolution are studied by coupling TEM, X-ray diffraction and Raman spectroscopy. The first modifications appear at 1800 °C with a significant decrease of the crystalline order. It is due to SWNTs coalescence leading to smaller bundles but with an increase of the tube diameters from 2 to 4 nm. From 2200 °C, SWNTs progressively disappear to the benefit of MWNTs having at first two to three carbon layers then reaching 7 nm external diameter. The possible mechanisms responsible for the SWNTs coalescence and instability and their transformation in MWNTs are discussed.  相似文献   

2.
Calcium tartrate doped with Ni and/or Co has been used as a catalyst source in the chemical vapor deposition synthesis of carbon nanotubes (CNTs). Thermolysis of doped calcium tartrate in an inert atmosphere was shown to yield Ni, Co or Ni-Co nanoparticles ∼6 nm in diameter dispersed in a calcium oxide matrix. The CNT synthesis was carried out by ethanol vapor decomposition at 800 °C. The structure of the products was characterized by transmission electron microscopy and Raman spectroscopy. It was found that Ni nanoparticles embedded in CaO provide the narrowest diameter distribution of CNTs, while the bimetallic Ni-Co catalyst allows the formation of the thinnest CNTs with the outer diameter of ∼2 nm. This type of CNT is more likely to be responsible for the lowest value of the turn-on field (∼1.8 V/μm) for the emission current detected for the latter sample.  相似文献   

3.
Platinum (Pt) catalytic electrode was developed by using carbon nanotube films (buckypaper) as supporting medium and electrodeposition method to deposit Pt catalyst. Buckypapers are free-standing thin films consisting of single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and/or carbon nanofibers (CNFs) held together by van der Waals forces without any chemical binders. Special mixed buckypapers was developed by layered microstructures with a dense and high-conducting SWNT networks at the surface, as well as large porous structures of CNF networks as back supports. This unique microstructure can lead to improve Pt catalyst accessibility and mass exchange properties. Pt particles of about 6 nm were uniformly deposited in porous buckypapers. A promising electrochemical surface area of ∼40 m2/g was obtained from these electrodes. A Pt utilization as low as 0.28 gPt/kW was achieved for the cathode electrode at 80 °C. Pt utilization efficiency can be further improved by optimization of the electrodeposition condition in order to reduce the Pt particle size.  相似文献   

4.
David Gingery 《Carbon》2008,46(14):1966-1972
Multiwalled carbon nanotubes (MWCNTs) were grown on W substrates by chemical vapor deposition and modified with Au nanoparticles by thermal evaporation. The resulting hybrid structures were investigated by TEM to determine the effects of evaporation rate, nominal film thickness, and substrate temperature on the nanoparticle size and distribution. The results demonstrate that as-grown MWCNTs can be used as a support for well distributed Au nanoparticles, with the size and distribution on the carbon nanotubes being primarily influenced by the nominal film thickness. The observed structures ranged from small 4 nm diameter spherical particles to 150 nm long wire-like structures. Depositions with substrates at 25 °C and 400 °C resulted in similar particle structures, except for the highest amount of deposited Au.  相似文献   

5.
Lixiang Li 《Carbon》2005,43(3):623-629
Double-walled carbon nanotubes (DWNTs) were synthesized in a large scale by a hydrogen arc discharge method using graphite powders or multi-walled carbon nanotubes/carbon nanofibers (MWNTs/CNFs) as carbon feedstock. The yield of DWNTs reached about 4 g/h. We found that the DWNT product synthesized from MWNTs/CNFs has higher purity than that from graphite powders. The results from high-resolution transmission electron microscopy observations revealed that more than 80% of the carbon nanotubes were DWNTs and the rest were single-walled carbon nanotubes (SWNTs), and their outer and inner diameters ranged from 1.75 to 4.87 nm and 1.06 to 3.93 nm, respectively. It was observed that the ends of the isolated DWNTs were uncapped and it was also found that cobalt as the dominant composition of the catalyst played a vital role in the growth of DWNTs by this method. In addition, the pore structures of the DWNTs obtained were investigated by cryogenic nitrogen adsorption measurements.  相似文献   

6.
A new catalyst (Ni/Mo/MgO) is reported, with which one can synthesize multi-walled carbon nanotube (MWNT) bundles with a yield of more than 45 times the amount of the pristine catalyst, using a methane-hydrogen mixture as precursor. Powder X-ray diffraction, Raman spectroscopy and thermal gravimetric analysis show that the purity of the as-prepared MWNTs is over 97%. The diameter of the carbon nanotubes is 9-20 nm, measured by high-resolution electron microscopy on 421 individual MWNTs. The high purity of the as-prepared MWNTs allows us to omit the usual complex purification process required for carbon nanotubes synthesized by chemical vapor deposition. Because of its durable high activity, the Ni/Mo/MgO catalyst in its pristine state is ideal for mass production of high-quality MWNTs. The synergism of nickel and molybdenum is considered the main reason for the high yield of carbon nanotubes.  相似文献   

7.
TiO2/multi-wall carbon nanotube (MWNT) heterojunction arrays were synthesized and immobilized on Si(0 0 1) substrate as photocatalysts for inactivation of Escherichia coli bacteria. The vertically aligned MWNT arrays were grown on ∼5 nm Ni thin film deposited on the Si by using plasma enhanced chemical vapor deposition at 650 °C. Then, the MWNTs were coated by TiO2 using dip-coating sol-gel method. Post annealing of the TiO2/MWNTs at 400 °C resulted in crystallization of the TiO2 coating and formation of Ti-C and Ti-O-C carbonaceous bonds at the heterojunction. The visible light-induced photoinactivation of the bacteria increased from MWNTs to TiO2 to TiO2/MWNTs, in which the bacteria could even slightly breed on the MWNTs. In addition, the TiO2/MWNTs annealed at 400 °C showed a highly improved antibacterial activity than the TiO2/MWNTs annealed at 100 °C. The excellent visible light-induced photocatalytic efficiency of the TiO2/MWNTs/Si film annealed at 400 °C was attributed to formation of the carbonaceous bonds at the heterojunction, in contrast to the 100 °C annealed TiO2/MWNTs/Si sample which had no such effective bonds.  相似文献   

8.
Md Shajahan  A.K.M Fazle Kibria  M.J Kim 《Carbon》2004,42(11):2245-2253
A series of MgO supported catalysts having Co and Mo metals 5-40 wt.% in a ratio of 1:1 was prepared by impregnation method. Carbon nanotubes (CNTs) were grown over the catalysts by decomposition of C2H2 at 800 °C for 30 min. It was found that 5 and 10 wt.% Co-Mo/MgO catalysts produced single-wall nanotubes (SWNTs), whereas 20, 30 and 40 wt.% Co-Mo/MgO catalysts produced multi-wall nanotubes (MWNTs). The catalyst Mo/MgO was inactive in growing CNTs. In Co-Mo/MgO catalysts, however Mo generated a favorable environment to grow SWNTs. The growth of SWNTs was strongly dependent on the formation of small clusters of cobalt, which may generate from the decomposition of CoMoO4 species during the nanotube growth. MWNTs were produced over comparatively larger cobalt clusters generated from Co3O4 phase during the nanotube growth stage. The yields of SWNTs were about 6% and 27% over 5 and 10 wt.% Co-Mo/MgO catalysts, respectively. MWNTs yield (576%) was observed over 40 wt.% Co-Mo/MgO catalyst. Carbon yield (%) highly varied with acetylene concentration.  相似文献   

9.
Raman spectroscopy and nitrogen adsorption measurements were combined to study the surface features of semi-conducting and metallic single-wall nanotubes (SWNTs). The nanotubes were treated chemically and with heat under moderate conditions that more than doubled the mesopore volume of the tested samples, which consistently led to a significant rise in the total surface area of up to 1550 m2/g. The large increase in the number of micropores of less than 1 nm in diameter was associated with the loosening of nanotube bundles as well as the creation of structural flaws on the surface of individual SWNTs due to chemical treatment. Micropores in the 1.0-1.8 nm range were associated with the holes created on the surface of individual tubes. Heating at 1000 °C was shown to restore nanotube diameter to their initial pre-chemical treatment levels with the change in the chirality of SWNTs and diminish the porosity by closing small holes. It was assumed that the intermediate frequency range (500-1100 cm−1) was associated with the degree of imperfection of HiPco SWNTs crystalline structures, and therefore provided information about the degree of tube surface damage due to the presence of functional groups. A hypothesis explaining the transformation of SWNT porous structure during heat treatment is proposed.  相似文献   

10.
Siang-Piao Chai 《Carbon》2007,45(7):1535-1541
The effect of catalyst calcination temperature on the uniformity of carbon nanotubes (CNTs) diameter synthesized by the decomposition of methane was studied. The catalysts used were CoO-MoO/Al2O3 without prior reduction in hydrogen. The results show that the catalyst calcination temperature greatly affects the uniformity of the diameter. The CNTs obtained from CoO-MoO/Al2O3 catalysts, calcined at 300 °C, 450 °C, 600 °C, and 700 °C had diameters of 13.4 ± 8.4, 12.6 ± 5.1, 10.7 ± 3.2, and 9.0 ± 1.4 nm, respectively, showing that an increase in catalyst calcination temperature produces a smaller diameter and narrower diameter distribution. The catalyst calcined at 750 °C was inactive in methane decomposition. Transmission electron microscopy (TEM) studies showed that CNTs grown on the catalyst calcined at 700 °C were of uniform diameter and formed a dense interwoven covering. High-resolution TEM shows that these CNTs had walls of highly graphitized parallel graphenes.  相似文献   

11.
New catalyst precursors (copper and nickel acetylacetonates) have been used successfully for the synthesis of carbon nanotubes and onion particles from carbon monoxide. Catalyst nanoparticles and carbon products were produced by metal-organic precursor vapour decomposition and catalytic disproportionation of carbon monoxide in a laminar flow reactor at temperatures between 705 and 1216 °C. Carbon nanotubes (CNTs) were formed in the presence of nickel particles at 923-1216 °C. The CNTs were single-walled, 1-3 nm in diameter and up to 90 nm long. Hollow carbon onion particles (COPs) were produced in the presence of copper particles at 1216 °C. The COPs were from 5 to 30 nm in diameter and consisted of several concentric carbon layers surrounding a hollow core. The results of computational fluid dynamics calculations to determine the temperature and velocity profiles and mixing conditions of the species in the reactor are presented. The mechanisms for the formation of both CNTs and COPs are discussed on the basis of the experimental and computational results.  相似文献   

12.
The catalytic reaction concept was introduced in the growth of semiconductor micro- and nano-crystals. It was found that gallium nitride (GaN) micro- and nano-crystal structures, carbon nanaotubes, and silicon carbide (SiC) nanostructures could be efficiently grown using transition metal catalysts. The use of Ni catalyst enhanced the growth rate and crystallinity of GaN micro-crystals. At 1,100 ‡C, the growth rate of GaN micro-crystals grown in the presence of Ni catalyst was over nine times higher than that in the absence of the catalyst. The crystal quality of the GaN microcrystals was almost comparable to that of bulk GaN. Good quality GaN nanowires was also grown over Ni catalyst loaded on Si wafer. The nanowires had 6H hexagonal structure and their diameter was in the range of 30–50 nm. Multiwall nanotubes (MWNTs) were grown over 20Fe : 20Ni : 60Al2O3 catalyst. However, single wall nanotubes (SWNTs) were grown over 15Co : 15Mo : 70MgO catalyst. This result showed that the structure of CNTs could be controlled by the selection of catalysts. The average diameters of MWNTs and SWNTs were 20 and 10 nm, respectively. SiC nanorod crystals were prepared by the reaction of catalytically grown CNTs with tetrametysilane. Structural and optical properties of the catalytically grown semiconductor micro- and nano-crystals were characterized using various analytic techniques. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

13.
We report an efficient technique to separate ferromagnetic catalyst particles from an aqueous surfactant solution of single-walled carbon nanotubes (SWNTs) by the use of a 1.3 T permanent magnet. High resolution transmission electron microscopy (HRTEM) demonstrates that SWNTs are coated with a surfactant layer that stabilises the aqueous dispersions of SWNTs. The residual quantities of Fe catalyst (∼3%) can be effectively removed from a colloid solution of SWNTs in a magnetic field while absorbance spectra of the initial and purified solutions show that the nanotube diameter distribution remains unchanged.  相似文献   

14.
Amorphous carbon nanostructures from chlorination of ferrocene   总被引:1,自引:0,他引:1  
The chlorination of ferrocene at different temperature conditions yields several carbon nanostructures, which were studied by means of transmission and scanning electron microscopies. Amorphous carbon nanotubes (α-CNTs) up to 10 μm long with thick walls and ∼15 nm of internal diameter were observed in a sample treated at 200 °C during 30 min. They consisted on ∼90% of carbon, while the remaining 10% consists on iron and chlorine. At this temperature, amorphous carbon bags and open-ended branches were also found. When chlorinating ferrocene at the same temperature but with longer reaction time (180 min), no α-CNTs were formed. At higher temperature (300 °C, 30 min), amorphous carbon bags were found, with lower content of residual chlorine and iron, and presenting thinner walls. In the sample treated at even higher temperature (900 °C, 30 min) the carbon nanobags (wall thickness ∼12 nm) were almost spherical and more graphitic, and without impurities.  相似文献   

15.
Multiwalled carbon nanotubes (MWNTs) were synthesized using a chemical vapor deposition floating feed method in a vertical reactor. Effects of the preparation variables on the average diameter of carbon nanotubes were systematically examined using the fractional factorial design (FFD), path of the steepest ascent, and central composite design (CCD) coupled with the response surface methodology. From the FFD study, the main and interactive effects of reaction temperature, methane flow rate, and chamber pressure were concluded to be the key factors influencing the diameter of MWNTs. Two empirical models, representing the dependence of the diameter of carbon nanotubes at the vicinities around maximum (420 nm) and minimum (15 nm) on the reaction temperature and methane flow rate, were constructed in two independent CCD studies. These models, shown as contour diagrams, indicated that the diameter of carbon nanotubes generally increased with increasing reaction temperature and methane flow rate. Based on both models, the diameter of MWNTs from 15 to 420 nm can be controlled precisely by using a continuous CVD fabrication method.  相似文献   

16.
Tao Luo 《Carbon》2005,43(4):755-759
Helically coiled carbon nanotubes (HCNTs) with diameter of 50-100 nm were obtained on a large scale by reducing ethyl ether with metallic zinc at 700 °C. As the temperature was raised to 750 °C, most of the products were solid carbon spheres besides HCNTs. X-ray diffraction pattern and the Raman spectroscopy indicate that the product is graphite phase. HCNTs with diameter of 50-100 nm in large quantity were found in the products.  相似文献   

17.
Ling Zhang  Tao Tao  Chunzhong Li 《Polymer》2009,50(15):3835-3840
Multi-walled carbon nanotubes (MWNTs) periodically decorated with polyethylene (PE) lamellar crystals had been prepared using the non-isothermal crystallization method. The morphology and structure of polyethylene attached to MWNTs were investigated by means of transmission electron microscopy (TEM). A nano-hybrid shish-kebab (NHSK) structure was observed wherein the average diameter of PE lamellar crystals varies from 30 to 150 nm with average periodicity of 35-80 nm. The TEM images of samples obtained at 125 °C showed that MWNTs were first wrapped by a homogeneous coating of PE with few subglobules, then PE chains epitaxially grew from the subglobule and formed lamellar crystals perpendicular to the carbon nanotube axis. It is suggested that the homogeneous coating plays a key role in the formation of NHSK structures. And the formation process was discussed based on the intermediate state images of samples obtained at 95 °C. While NHSK structures cannot be formed by using polypropylene (PP). This may attribute to the zigzagged conformation of PP chains on the surface of MWNTs, which hinders the formation of homogeneous coating of PP on it.  相似文献   

18.
Silicon carbide nanotubes with medium surface area (30-60 m2/g) were successfully prepared by reaction between carbon nanotubes and SiO vapor according to the shape memory synthesis (SMS). The gross morphology of the carbon nanotubes was maintained during the carburization process. A calcination in air at 600 °C was performed to remove unreacted carbon domains in order to obtain pure carbon-free SiC nanotubes. The synthesized SiC nanotubes had a mean outer diameter of 100 nm and lengths up to several tens of micrometres.  相似文献   

19.
Tingkai Zhao  Yongning Liu  Jiewu Zhu 《Carbon》2005,43(14):2907-2912
Large amounts of amorphous carbon nanotubes (ACNTs) were prepared with Co-Ni alloy powders as catalyst in hydrogen gas atmosphere by a modified arc discharging furnace which can control temperature during the electric arcing process. The experimental results indicate that the cooperative function of temperature and catalyst plays an important role in the soot production rate and the relative ACNT purity. When temperature increases from 25 °C to 700 °C, the soot production rate increases from around 1 g/h to 8 g/h, the best relative ACNT purity at 600 °C can reach up to 99% compared to the room temperature sample. Without catalyst, only plate graphite is formed at 25 °C and very few carbon nanotubes are found when temperature increases to 600 °C. TEM, SEM, HRTEM and XRD analysis showed that the as-prepared carbon nanotubes are almost amorphous. The soot production rate is 8 g/h and diameter range of amorphous carbon nanotubes is about 7-20 nm, respectively.  相似文献   

20.
Partially Fe filled multi-walled carbon nanotubes (MWCNTs) were grown by chemical vapor deposition with propane at 850 °C using a simple mixture of iron (III) acetylacetonate (Fe(acac)3) powder and conventional photoresist. Scanning electron microscopy revealed that catalytic nanoparticles with an average diameter of 70 nm are formed on the Si substrate which governs the diameter of the MWCNTs. Transmission electron microscopy shows that the nanotubes have a multi-walled structure with partial Fe filling. A site-selective growth of partially Fe filled MWCNTs is achieved by a simple photolithographic route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号