共查询到19条相似文献,搜索用时 78 毫秒
1.
柔性作业车间调度问题是生产管理领域和组合优化领域的重要分支.本文提出一种基于Pareto支配的混合粒子群优化算法求解多目标柔性作业车间调度问题.首先采用基于工序排序和机器分配的粒子表达方式,并直接在离散域进行位置更新.其次,提出基于BaldWinian学习策略和模拟退火技术相结合的多目标局部搜索策略,以平衡算法的全局探索能力和局部开发能力.然后引入Pareto支配的概念来比较粒子的优劣性,并采用外部档案保存进化过程中的非支配解.最后用于求解该类问题的经典算例,并与已有算法进行比较,所提算法在收敛性和分布均匀性方面均具有明显优势. 相似文献
2.
《计算机应用与软件》2018,(3)
利用粒子群算法解决车间调度问题,是一种有效的策略。对粒子群算法进行分析,针对多目标的柔性车间调度问题,构建了以加工时间最小化、加工成本最小化和单机器最大负荷最小化的多目标柔性车间调度模型。提出基于交叉变异的变参粒子群算法,以提高其跳出局部最优快速达到全局最优的能力。同时,引入智能小车概念,将运输时间考虑到此调度中。并将该方法用于某离散制造业的柔性车间作业调度中,最后验证了该算法的实用性及高效性。 相似文献
3.
基于蚁群粒子群算法求解多目标柔性调度问题 总被引:1,自引:0,他引:1
通过分析多目标柔性作业车间调度问题中各目标的相互关系,提出一种主、从递阶结构的蚁群粒子群求解算法。算法中,主级为蚁群算法,在选择工件加工路径过程中实现设备总负荷和关键设备负荷最小化的目标;从级为粒子群算法,在主级工艺路径约束下的设备排产中实现工件流通时间最小化的目标。然后,以设备负荷和工序加工时间为启发式信息设计蚂蚁在工序可用设备间转移概率;基于粒子向量优先权值的大小关系设计解码方法实现设备上的工序排产。最后,通过仿真和比较实验,验证了该算法的有效性。 相似文献
4.
5.
将粒子群算法运用于求解柔性作业车间调度问题,采用基于轮盘赌的编码方法以及基于邻域互换的局部搜索方法。通过两个不同规模算例的试验计算,与基于粒子位置取整的编码方法进行对比分析,说明了轮盘赌编码方法求解柔性作业车间调度问题的有效性。且采用该编码方法的混合粒子群算法在求解柔性作业车间调度问题时具有更好的求解性能。 相似文献
6.
在多目标柔性车间作业调度问题的研究中,求解算法与多目标处理至关重要。因此,基于非支配排序遗传算法提出了改进遗传算法求解该问题,设计了相应的矩阵编码、交叉算子,改进了非劣前沿分级方法,并提出了基于Pareto等级的自适应变异算子以及精英保留策略。实例计算表明,该算法可以利用传统遗传算法全局搜索能力的同时可以防止早熟现象的发生。改进非劣前沿分级方法可以快速得到Pareto最优解集,进一步减小了计算复杂度,而且可以根据种群的多样性改变变异概率,有利于保持种群多样性、发掘潜力个体。 相似文献
7.
航空零件生产车间调度具有目标多样性和不确定性问题,普通方法难以求得最佳调度顺序。针对这个问题,采用了混合粒子群算法优化加工工序。该算法通过个体交叉,变异的方法来反复迭代寻优,从而得到更好的零件加工工序。通过仿真实验验证了该算法的有效性,从而为航空零件加工车间调度优化提供了一种新的思路。 相似文献
8.
将粒子群优化算法应用于求解多目标优化问题,提出一种双向搜索机制,指导粒子向着搜索空间中非劣目标区域以及粒子分布最为稀疏的区域这两个方向进行寻优,进而提出了求解多目标优化问题的基于粒子群优化算法的双向搜索法,该算法对粒子全局最优经验的选择策略以及粒子群的状态更新机制进行了改进。实验研究表明,该算法不仅能快速有效地获得多目标优化问题的非劣最优解集,而且求出的解集具有良好的分布性。 相似文献
9.
柔性作业车间调度问题具有解集多样化与解空间复杂的特点,传统多目标优化算法求解时容易陷入局部最优且丢失解的多样性。在建立以最大完工时间、最大能耗、机器总负荷为优化目标的柔性作业车间调度模型的情况下,提出一种改进的非支配排序遗传算法(Improved Non-dominated Sorting Genetic Algorithm II, INSGA-II)求解该模型。INSGA-II算法先将随机式初始化与启发式初始化方法混合,提高种群多样性;然后对工序部分与机器部分采用针对性的交叉、变异策略,提高算法全局搜索能力;最后设计自适应的交叉、变异算子以兼顾算法的全局收敛与局部寻优能力。在mk01~mk07标准数据集上的实验结果显示INSGA-II算法有着更优的算法收敛性与解集多样性。 相似文献
10.
针对加工时间为模糊数的柔性作业车间调度问题,考虑最小化模糊最大完工时间、模糊机器总负荷、模糊关键机器负荷为优化目标,提出一种有效求解该类优化问题的多目标进化算法。算法采用一种混合不同机器分配和工序排序策略的方法产生初始种群,并采用插入空隙法对染色体进行解码。定义一种新的基于可能度的个体支配关系和一种基于决策空间的拥挤算子,并将所提支配关系和拥挤算子运用于快速非支配排序。接着,提出一种基于移动模糊关键工序的局部搜索策略对种群中的优势个体进行局部搜索。通过试验研究关键参数对算法性能的影响并将所提算法与3种不同的优化算法作对比。结果表明,所提算法能够比其它算法更有效解决多目标模糊柔性作业车间调度优化问题。 相似文献
11.
针对单线列车调度问题的特点,以线路中列车的总运行时间最小为目标,建立了可以直观描述问题解空间的双向阻塞车间调度模型,并提出了一种有效的离散粒子群优化算法进行求解。该算法基于双向阻塞车间调度模型设计了排列编码形式,从而可确定列车的运行顺序,同时利用随机策略和运行时间最短优先策略选择列车运行轨道;算法在求解过程中,提出了列车冲突的检测和化解方法,并按照“调度-检测冲突-化解冲突”的步骤逐区段调度列车运行;最后,利用离散粒子群优化算法进行全局优化,得到问题的最优解。仿真实例表明,所得模型和算法能够高效地求解单线列车调度问题。 相似文献
12.
求解车间调度问题的自适应混合粒子群算法 总被引:5,自引:0,他引:5
针对最小完工时间的流水车间作业调度问题,提出了一种自适应混合粒子群进化算法--AHPSO,将遗传操作有效地结合到粒子群算法中.定义了粒子相似度及粒子能量,粒子相似度阈值随迭代次数动态自适应变化,而粒子能量阈值与群体进化程度及其自身进化速度相关.此外,针对算法运行后期进化速度慢的缺点,提出了一种基于邻域的随机贪心策略进一步提高算法的性能.最后将此算法在不同规模的实例上进行了测试,并与其他几种具有代表性的算法进行了比较,实验结果表明,无论是在求解质量还是稳定性方面都优于其他几种算法,并且能够有效求解大规模车间作业问题. 相似文献
13.
在生产调度领域,柔性作业车间调度问题是一个非常重要的优化问题。大多数研究通常优化的目标只是最大完工时间,而在实际中,往往要考虑多个目标。因此,提出了一种新的混合多目标算法用于解决柔性作业车间调度问题,其中考虑了3个目标,分别是:最大完工时间、机器总负载和瓶颈机器负荷。算法设计了有效的编码方式和遗传算子,并采用非支配近邻免疫算法求解非支配最优解。为了提高算法性能,提出了3种不同的局部搜索策略,并将其结合在多目标算法中。在多个数据集上的实验对比结果表明,所提算法优于其它代表性的算法。此外,实验结果还验证了局部搜索技术的有效性。 相似文献
14.
15.
针对以最小化最大完工时间为目标函数的柔性作业车间调度问题,建立其数学模型并提出了一种两段式狼群算法加以求解.采用两段式(two-vector code)的编码方式,设计初始化种群的方式,保证初始解的质量及多样性;通过对原始狼群算法中游走行为、召唤行为、围攻行为的重新设计,解决了原始狼群算法易陷入局部最优的问题;舍弃原始... 相似文献
16.
17.
柔性作业车间调度问题是智能制造领域的一类典型调度问题,它是制造流程规划和管理中最关键的环节之一,有效的求解方法对提高生产效率具有重要的现实意义。本文基于经典灰狼算法进行改进,以优化最大完工时间为目标,提出一种改进的灰狼算法来求解柔性作业车间调度问题。算法首先采用基于权值的编码形式,实现对经典狼群算法中连续性编码的离散化;其次在迭代优化过程中加入随机游走策略,以增强局部搜索能力;然后在种群更新过程中加入尾部淘汰策略,在避免局部优化的同时增加种群多样性,合理扩大算法的广度搜索范围。在标准算例上的仿真实验结果表明,改进的灰狼算法在求解FJSP时比经典灰狼算法在寻优能力方面具有明显的优势,相比其它智能优化算法,本文所提算法在每种算例上均具有更好的优化性能。 相似文献
18.
针对传统的群智能优化算法在求解柔性作业车间调度问题(FJSP)时,存在寻优能力不足且易陷入局部最优等缺点,本文以最小化最大完工时间为目标,将萤火虫算法(FA)用于求解柔性作业车间调度问题,提出一种改进的离散型萤火虫算法(DFA)。首先,通过两段式编码建立FA连续优化问题与FJSP离散优化问题之间的联系;其次,设计一种群初始化方法,以确保初始解的质量以及多样性;然后,提出改进离散型萤火虫优化算法并引入局部搜索算法,加强算法的全局搜索能力和局部搜索能力;最后,对标准算例进行仿真,验证DFA算法求解FJSP的有效性。通过与遗传算法和粒子群优化算法进行仿真对比,表明了DFA求解FJSP的优越性。 相似文献
19.
一种基于粒子群优化的多目标优化算法 总被引:5,自引:2,他引:5
论文提出了一种基于粒子群的多目标优化算法,该算法采用Pareto支配关系来更新粒子的个体最优值和局部最优值,用存储池保存搜索过程中发现的非支配解;采用聚类算法裁剪非支配解,以保持解的分布性能;采用动态惯性权重法来平衡粒子群对解空间的局部搜索和全局搜索,以提高算法的全局收敛性能。实验结果表明,论文算法是有效的,能有效的求解多种多目标优化问题。 相似文献