首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spatially distributed and continuous hydrologic model focusing on total maximum daily load (TMDL) projects was developed. Hydrologic models frequently used for TMDLs such as the hydrologic simulation program—FORTRAN (HSPF), soil and water assessment tool (SWAT), and generalized watershed loading function (GWLF) differ considerably in terms of spatial resolution, simulated processes, and linkage flexibility to external water quality models. The requirement of using an external water quality model for simulating specific processes is not uncommon. In addition, the scale of the watershed and water quality modeling, and the need for a robust and cost-effective modeling framework justify the development of alternative watershed modeling tools for TMDLs. The hydrologic and water quality integration tool (HydroWAMIT) is a spatially distributed and continuous time model that incorporates some of the features of GWLF and HSPF to provide a robust modeling structure for TMDL projects. HydroWAMIT operates within the WAMIT structure, developed by Omni Environmental LLC for the Passaic River TMDL in N. J. HydroWAMIT is divided into some basic components: the hydrologic component, responsible for the simulation of surface flow and baseflow from subwatersheds; the nonpoint-source (NPS) component, responsible for the calculation of the subwatershed NPS loads; and the linkage component, responsible for linking the flows and loads from HydroWAMIT to the water quality analysis simulation program (WASP). HydroWAMIT operates with the diffusion analogy flow model for flow routing. HydroWAMIT provides surface runoff, baseflow and associated loads as outputs for a daily timestep, and is relatively easy to calibrate compared to hydrologic models like HSPF. HydroWAMIT assumes that the soil profile is divided into saturated and unsaturated layers. The water available in the unsaturated layer directly affects the surface runoff from pervious areas. Surface runoff from impervious areas is calculated separately according to precipitation and the impervious fractions of the watershed. Baseflow is given by a linear function of the available water in the saturated zone. The utility of HydroWAMIT is illustrated for the North Branch and South Branch Raritan River Watershed (NSBRW) in New Jersey. The model was calibrated, validated, and linked to the WASP. The NPS component was tested for total dissolved solids. Available weather data and point-source discharges were used to prepare the meteorological and flow inputs for the model. Digital land use, soil type datasets, and digital elevation models were used for determining input data parameters and model segmentation. HydroWAMIT was successfully calibrated and validated for monthly and daily flows for the NSBRW outlet. The model statistics obtained using HydroWAMIT are comparable with statistics of HSPF and SWAT applications for medium and large drainage areas. The results show that HydroWAMIT is a feasible alternative to HSPF and SWAT, especially for large-scale TMDLs that require particular processes for water quality simulation and minor hydrologic model calibration effort.  相似文献   

2.
Bacterial levels in Buffalo Bayou in Houston commonly exceed contact recreation standards. Potential sources of bacteria include wastewater treatment plants, sanitary sewer overflows, septic systems, wet and dry nonpoint-source discharges via direct runoff and pipes, direct deposition, and sediment. A water-quality model in the Hydrologic Simulation Program—FORTRAN (HSPF) was calibrated and validated for hydrology, sediment, and Escherichia coli and subsequently used to evaluate the impacts of the bacterial sources in the watershed. In addition, simple estimates of bacterial loads were calculated along with source evaluations from load duration curves. Load reductions based upon the simple estimates indicated that water-quality standards were met by reducing dry-weather indicator bacterial loads by 69% and wet-weather loads by 98%. When these load reductions were implemented in the HSPF model, however, standards were not met under dry-weather conditions. Residual nonpoint-source loading was found to cause the discrepancy between simple load estimate calculations and the developed water-quality model. This paper demonstrates that runoff can play a significant role in maintaining high levels of bacteria under all flow conditions and that understanding the temporal variations in bacterial source loading is critical to ensure that load reductions will achieve water-quality standards.  相似文献   

3.
Long-term nonpoint source (NPS) pollutant flux is described within the rapidly developing Occoquan watershed west of Washington, D.C. Data consist of up to 24 years of observed rainfall, integrated pollutant discharge, and land use/land cover from four headwater basins of the Occoquan River. Three of the four study basins, ranging in size from 67 to 400?km2, are predominantly forest and mixed agriculture. The fourth basin, the 127?km2 Cub Run watershed, has urbanized rapidly over the past 20 years. Higher annual NPS sediment and nutrient fluxes in Cub Run after 1983 are linked to increased soil disturbance from urban construction and increased storm volumes resulting from increased mean impervious percent. Over the long-term, storm fluxes of NPS particulate P, soluble P, particulate N, and soluble N make up 92, 67, 89, and 50%, respectively, of the total fluxes of those constituents, with between 88 and 98% of mean annual total suspended solids fluxes delivered by storm flow. Higher NPS pollutant fluxes in Cub Run basin after 1983, and specifically during the growing season, indicate a seasonal impact of replacing vegetated cover with impervious surface.  相似文献   

4.
Water quality of highway stormwater runoff from an ultra-urban area was characterized by determining the event mean concentration (EMC) for several pollutants and by evaluating pollutant flushing. Thirty-two storm events were monitored between June 2002 and October 2003. Mean EMCs in mg/L were 0.035, 0.11, 0.22, 1.18, 420, 3.4, 0.14, 1.0, and 0.56 for Cd, Cu, Pb, Zn, total suspended solids (TSS), total Kjeldahl nitrogen (TKN), NO2–N, NO3–N, and TP. First flush as defined by flushing of 50% of the total pollutant mass load in the first 25% of the event runoff volume occurred in 33% of the storm events for NO2?, 27% for TP, 22% for NO3? and TKN, 21% for Cu, 17% for TSS, 14% for Zn, and 13% for Pb. Median values for the mass flushed in the first 25% of runoff volume were greater than the mass flushed in any 25% portion beyond the first for all pollutants. The mass in later 25% volume portions were greater than in the first 25% volume in at least 17% of the events for all pollutants, indicating that a significant amount of the pollutant load can be contained in later portions of the runoff volume. Nonetheless, management of the first 1.3?mm (1/2?in.) of runoff was able to capture 81–86% of the total pollutant mass.  相似文献   

5.
Some of the highest losses of nitrate to surface waters come from drained agricultural land. This research studied, for Belgian farming conditions, (i) the effect of subsurface drainage density on nitrate losses and (ii) the economics of nitrate losses, using the nitrogen version of the program DRAINMOD-N. DRAINMOD was used to simulate the performance of the drainage system of the Hooibeekhoeve experiment, situated in the sandy region of the Kempen (Belgium) for a 14-year (1985–1998) period. A continuous cropping with maize was assumed. Daily NO3-N losses were predicted for a range of drain spacings and depths, two drainage strategies (conventional and controlled), and three fertilizer application rates (225, 275, and 325 kg?N?ha?1). Losses of N in subsurface drainage were assumed to occur almost entirely in the NO3-N form. Losses of organic and inorganic N in the form of NO3-N in surface runoff are small and were neglected. Hydrologic results indicated that increasing drain spacing or decreasing drain depth reduces drainage discharge while it increases runoff. The use of controlled drainage reduces subsurface drainage and increases runoff. Results also revealed that increasing the drain spacing or decreasing the drain depth reduces nitrate-nitrogen (NO3-N) drainage losses and net mineralization, while increasing denitrification and runoff losses. Controlled drainage caused a predicted reduction in drainage losses and an increase in denitrification and runoff losses. The optimal combination of drain density and management is one that maximizes profits and minimizes environmental impacts. Simulated results indicated that NO3-N losses to the environment could be substantially reduced by reducing the drainage density below the level required for maximum profits based on grain sales. The study concluded that, if the environmental objective is of importance equal to or greater than profits, drainage systems can be designed and managed to reduce NO3-N losses while still providing an acceptable profit.  相似文献   

6.
In India, fertilizers and chemicals are applied to different crops, which in turn, cause nonpoint source pollution of surface water and groundwater of the region. In the present work, extensive water quality surveys were done to estimate the nutrient outflow from three small agricultural watershed of the Kali Basin, Uttar Pradesh, India. A total of 576 field data sets have been collected during March 1999–February 2000 from four sampling stations. During the monsoon period the nutrient outflow from these agricultural watersheds were found to be orders of magnitude higher than during the nonmonsoon period. The percentage of nutrients outflow from each watershed was estimated on a monthly basis by obtaining periodical cropping patterns and the amounts of fertilizer applied for each watershed. A maximum of 85% of total nitrate and 70% of total orthophosphate applied in the field was found to be lost during the month of July from the third agricultural watershed having maximum slope and minimum watershed area. Using the data sets generated during field surveys, commonly used modeling approaches based on mass balance differential loading and decay fraction were tested for their applicability to estimate nonpoint source (NPS) pollution in the River Kali. The NPS concentration and load values computed from these approaches were compared with the NPS values measured in the field and the performances of different equations have been evaluated using error estimations such as standard error, normal mean error, mean multiplicative error, and correlation statistics. Further, a refined model based on reaction kinetics and mass balance differential loading has been proposed for the River Kali that minimizes error estimates and improves correlation between observed and computed nonpoint source loads.  相似文献   

7.
Hydrologic model calibration is always a challenging and tedious process especially for the calibration of complex models, which includes continuous hydrograph models, requires sophisticated calibration methods. The Hydrologic Simulation Program-FORTRAN (HSPF) is one of the popular and powerful time variable hydrologic models. However, in order to improve the assessment of hydrologic activities in shallow ground water settings, the model needs to be reliably calibrated for ground water contribution. Little guidance is provided in the literature concerning the manner of this contribution. In fact, the most common calibration of HSPF uses subjective parameter fitting and focuses on the attainment of statistical goodness of fit of runoff fluxes and water levels, ignoring ground water components. The goal of this research is using a different approach to calibrate HSPF with observed water table records. In this study, HSPF is applied on a small area in west-central Florida and calibrated by comparing active ground water storage to well elevation records in range land and forested land covers. The Nash-Sutcliffe efficiency and correlation coefficient computed using observed and simulated daily flows are 0.91 and 0.96 at Peace River, respectively, also with good fair results for other stations in the model domain. The study shows that improved calibration of the model can be achieved if active ground water storage and well records are compared for timing and magnitude of fluctuations.  相似文献   

8.
Recently, increasing nutrient (i.e., nitrogen and phosphorus) concentrations have been observed in the surface water of many countries and this nonpoint source (NPS) pollution has become an important factor in the deterioration of water quality in the upper reach of the Yangtze River Basin. In this paper, the NPS pollution loads in the upper reach of Yangtze River Basin in the year 2000 were estimated using export coefficient model and remote sensing techniques. The spatial distributions of the NPS loads within the watershed were then displayed using geographical information system. Results indicated that the total nitrogen load was 1.947×106?t and the total phosphorus load was 8.364×104?t. Important source areas for the nutrients were croplands in the Jinsha R. and Jialing R. watershed, as well as the Chongqing municipality.  相似文献   

9.
Storm-water best management practices (BMPs) are typically assessed using the performance metric of pollutant concentration removal efficiencies. However, debate exists whether this is the most appropriate metric to use. In this study, a storm-water wetland constructed and monitored in the coastal plain of North Carolina is evaluated for water quality and hydrologic performance using four different metrics: concentration reduction, load reduction, comparison to nearby ambient water quality monitoring stations, and comparison to other wetlands studied in North Carolina. The River Bend storm-water wetland was constructed in spring 2007 and was monitored from June 2007 through May 2008. Twenty-four hydrologic and 11 water quality events were captured and evaluated. The wetland reduced peak flows and runoff volumes by 80 and 54%, respectively. Reductions were significant. Concentrations for the following pollutants increased: total kjeldahl nitrogen (TKN), NH4–N, total nitrogen (TN), and total suspended solids (TSS); inflow and outflow concentrations did not change for total phosphorus (TP), while only NO2–3–N and orthophosphorus (OP) concentrations were lower at the outlet. Using a load reduction metric, results were strikingly different, showing positive load reductions of 35, 41, 42, 36, 47, 61, and 49% for these respective pollutants: TKN, NO2–3–N, NH4–N, TN, TP, OP, and TSS. When comparing the effluent concentrations from the wetland to ambient water quality in the Trent River, all effluent nitrogen species concentration were either similar or lower. TP and TSS concentrations leaving the wetland were higher than ambient water quality data. Finally, by comparing pollutant concentrations among different North Carolina wetlands, it is apparent the River Bend wetland received relatively “clean” water and released water with pollutant concentrations comparable to all other studies examined. Major conclusions from this study include: (1) storm-water wetlands sited in sandier soils (such as those of the North Carolina coastal plain) should be considered a low impact development tool and (2) the selection of performance metric has a pronounced bearing on how a BMP’s performance is perceived. Sole reliance on a concentration reduction metric is discouraged.  相似文献   

10.
Non-point source pollution is an important factor that affects the water quality of the Weihe River. To study the effect of the pollution on the water quality of the Weihe River, five flood events and three normal discharge events during non-flood period were monitored from July to December in 2006, at the Lin-tong section. In order to identify how sediment influenced the water quality of the river, raw and supernatant samples taken from the monitored events were analyzed. Supernatant samples were siphoned from 5 cm below the water surface of the raw samples at the lab afterwards the raw samples were shaken up and laid for 30 minutes in the beakers. The results indicated that: 1) The concentrations of SS, COD, TP and TN in the raw samples from flood events were higher than those from normal discharge events. The higher values of the COD, TP and TN in the raw samples resulted from natural humic matters in surface soil. 2) The load transport rate of analyzed water quality indexes increased gradually to its maximum and then drop down, matching that in the discharge hydrograph. The concentrations of SS, NH3-N, NO2-N, NO3-N, COD, and TP in the raw samples increased initially and then decreased, while the concentration of dissolved orthophosphate and TN in the raw samples decreased gradually and then increased. The peak time of concentration and load transport rate of SS as well as COD, TP and TN in the raw samples were close to or lagged behind the time of peak flow.Generally, the peak time of concentration and load transport rate of dissolved orthophosphate,dissolved total-phosphate, NH3-N, NO2-N, and NO3-N occurred prior to the time of peak flow. 3) The mean concentration method was used to calculate the NPS pollution load at Lin-tong section, and the results are credible. In 2006, the proportions of the NPS pollution load to the total load for COD, TP,TN and inorganic nitrogen were more than 30%.  相似文献   

11.
As part of an ongoing watershed model comparison program for forested watersheds, Watershed Analysis Risk Management Framework (WARMF V5.18) and Hydrologic Simulation Program Fortran (HSPF V10) were independently applied to the Mica Creek Watershed in Idaho. A comprehensive model comparison was made in terms of watershed delineation, hydrologic formulations, model parameterization, meteorological data, hydrologic calibration, and hydrologic verification. Comparison was not made for water quality, which was not simulated in the HSPF application. It was concluded that WARMF is a mechanistic model structured to simulate the hydrologic processes, whereas HSPF is an empirical water budget model. The WARMF is suitable for application to forested watersheds. It successfully predicted stream flows comparable to measured values. The HSPF results were also good, if one ignores an unrealistic amount of water loss to inactive groundwater and an empirical treatment of rain-on-snow events.  相似文献   

12.
ANSWERS-2000: Non-Point-Source Nutrient Planning Model   总被引:2,自引:0,他引:2  
ANSWERS-2000, a non-point-source planning model was modified to simulate long-term nitrogen (N) and phosphorus (P) transport from rural watersheds. The model simulates infiltration, evapotranspiration, percolation, and runoff and losses of nitrate, adsorbed and dissolved ammonium, adsorbed total Kjeldahl N, and adsorbed and dissolved P losses. Eight soil nutrient pools are modeled: stable organic N, active organic N, nitrate, ammonium, and stable mineral P, active mineral P, organic P, and exchangeable P. The model was validated on two small watersheds without calibration and on a large watershed with calibration of only the sediment detachment parameters. Predicted cumulative runoff, sediment, nitrate, dissolved ammonium, adsorbed total Kjeldahl N, and orthophosphorus P losses were within a factor of 2 of observed values (?40 to +44% of observed values). Predictions of individual runoff event losses were not as accurate (?98 to +250%). The model seriously underpredicted adsorbed ammonium losses by up to 97%, and additional work is recommended on this submodel. In a practical application, the use of the model in evaluating the cost-effectiveness of alternative management scenarios was demonstrated.  相似文献   

13.
Sediment fingerprinting has been developed by researchers over the past three decades for watershed sediment transport research. Sediment fingerprinting is a method to allocate sediment nonpoint source pollutants in a watershed through the use of natural tracer technology with a combination of field data collection, laboratory analyses of sediments, and statistical modeling techniques. The method offers a valuable tool for total maximum daily load assessment to aid in developing efficient remediation strategies for pollution in watersheds. We review the methodological steps of sediment fingerprinting including classification of sediment sources in a watershed, identification of unique tracers for each sediment source, representation of sediment sources and sinks using field sampling, accounting for sediment and tracer fate during transport from source to sink, and utilization of an unmixing model to allocate sediment sources. This review places additional emphasis upon tracers used to discriminate sediment sources during past studies performed on different continents and across different physiogeographic regions. Review and analysis of tracer dependence upon watershed variables provides an additional resource for tracer selection to the community. Finally, future improvements needed for sediment fingerprinting are discussed in order to practically apply the technology for sediment nonpoint source pollution allocation within the context of total maximum daily load assessments.  相似文献   

14.
Very little work on the application of watershed modeling has been done in the tropical climatic conditions of Thailand to explore the nature of environmental problems arising from nonpoint source pollution due to agricultural activities, and to evaluate possible remedial measures and strategies. The present study attempts to verify the suitability of a nonpoint source pollution model, the Agricultural NonPoint Source model, for the Huai Nong Prong watershed in Southeastern Thailand. Extensive fieldwork was carried out to collect data and information needed for the model preparation and application. The study has revealed that simulated runoff volume, sediment, and nutrient yield from the watershed with mixed land use and relatively high slopes match favorably with observed data. For the ten rainfall events simulated, the coefficient of performance, a measure of model efficiency (equal to zero for a perfect match), was 0.09, 0.47, 0.09, and 0.03 for runoff volume, sediment yield, total nitrogen, and total phosphorus, respectively. The model, however, could not accurately simulate peak flow rates, suggesting the need for changes in the modeling approach or governing equations and relationships to calculate peak discharges in a tropical environment.  相似文献   

15.
Adsorption of Polycyclic Aromatic Hydrocarbons in Aged Harbor Sediments   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontaminated harbor sediments in contact with the natural overlaying water. Representative 2-, 3-, and 4-ring PAHs are used to obtain PAH adsorption/desorption data. Linear adsorption onto sediment is obtained for the following PAHs: Naphthalene and 2-methyl naphthalene (2 ring), acenaphthene, anthracene, and phenanthrene (3 ring), and fluoranthene and pyrene (4 ring). Linear adsorption is followed by a significant hysteresis in desorption from sediment, due to strong retention by the aged sediment organic carbon. Sediment organic carbon–water partition coefficients (log?Koc) for the seven PAHs range from 2.49 to 4.63. Based on the sorption data for these representative PAHs, sediment organic carbon–water partition coefficients may be predicted for other PAH compounds, particularly the less soluble and the more hydrophobic PAHs (5 or more rings).  相似文献   

16.
Best management practices (BMPs) are practical control measures (including technological, economic, and institutional considerations) that have been demonstrated to effectively minimize water quality impacts. The use of BMPs is widely accepted as the most appropriate method of controlling nonpoint sources of pollution because BMPs prevent or minimize pollution rather than retrospectively respond to it. Still, there is a stigma that BMPs do not afford quite the same degree of protection or assurance of pollution control that effluent treatment and process controls do for point sources. Here we provide a brief history of BMPs and their emergence as a practical water pollution control tool for nonpoint source activities, with a focus on the history of forestry BMPs. This history demonstrates the variety of BMPs used to avoid or minimize the generation of nonpoint source pollutants or reduce delivery of these materials to streams. It also demonstrates the extensive testing of BMP effectiveness that has been conducted throughout the United States. Those who must select or design BMPs face difficult issues about balancing desirable and undesirable inputs of watershed materials and energy to streams. We show that BMPs and nonpoint source control programs are not a “weak sister” of effluent treatment and point source control efforts, and are effectively addressing extremely complex and variable watershed conditions. Best management practices continue to evolve as research identifies new environmental concerns and control options and, as the primary tool for controlling nonpoint source pollution, play a key role in addressing water quality limited waterbodies.  相似文献   

17.
The objective of this study was to evaluate correlations between annual average daily traffic (AADT) and storm water runoff pollutant concentrations generated from California Department of Transportation (Caltrans) highway sites. Analyses of data collected from the Caltrans four-year (1997–2001) highway runoff characterization program revealed that, in general, pollutant concentrations from urban highways were higher than those found from nonurban highways. For a limited number of pollutants, however, the concentrations from nonurban highways were found to be higher than the concentrations from urban highways. No direct linear correlation was found between highway runoff pollutant event mean concentrations and AADT. However, through multiple regression analyses, it was shown that AADT has an influence on most highway runoff constituent concentrations, in conjunction with factors associated with watershed characteristics and pollutant build-up and wash off. The other noticeable factors shown to influence the accumulation of pollutants on highways were antecedent dry period, drainage area, maximum rain intensity, and land use.  相似文献   

18.
Bioretention is a stormwater treatment practice that has gained popularity due to its aesthetics, potential to reduce flooding, and early documented improvements to stormwater quality. A bioretention cell in an urban setting was examined in Charlotte, N.C. from 2004 to 2006. Flow-weighted, composite water quality samples were collected for 23 events and analyzed for TKN, NH4-N, NO2-3-N, TP, TSS, BOD-5, Cu, Zn, Fe, and Pb. Grab samples were collected from 19 storms for fecal coliform and 14 events for Escherichia coli (E. coli). There were significant reductions (p<0.05) in the concentrations of TN, TKN, NH4-N, BOD-5, fecal coliform, E. Coli, TSS, Cu, Zn, and Pb. Iron concentrations significantly increased (p<0.05). NO2-3-N concentrations were essentially unchanged. Efficiency ratios for TN, TKN, NH4-N, TP, and TSS were 0.32, 0.44, 0.73, 0.31, and 0.60, respectively. Fecal coliform and E. coli efficiency ratios were 0.69 and 0.71, respectively. Efficiency ratios for Zn, Cu, and Pb were 0.77, 0.54, and 0.31, respectively. Concentrations of Fe increased by 330%. The peak outflow of the bioretention cell for 16 storms with less than 42?mm of rainfall was at least 96.5% less than the peak inflow, with a mean peak flow reduction being 99%. These results indicated that in an urban environment, bioretention systems can reduce concentrations of most target pollutants, including pathogenic bacteria indicator species. Additionally, bioretention can effectively reduce peak runoff from small to midsize storm events.  相似文献   

19.
To evaluate the performance of a computer model simulating runoff and sediment load in the upper region of the Changjiang (Yangtze River) basin over a relatively short time interval, including examining the applicability of the input precipitation data generated from global circulation models and satellite data, we used a spatially distributed model, HSPF with the International Satellite Land Surface Climatology Project (ISLSCP) precipitation data for 1987 and 1988 as input data. The Nash–Sutcliffe coefficient (R2) for 5-day average streamflow was 0.94 in the calibration period and 0.95 in the verification period for the whole upper region. Moreover, the model simulated the 5-day average streamflow well in each main tributary, as shown by R2 values of 0.46–0.96, except that it underestimated the peak flow rates during the flood season over 2 years by up to 71% in Tuojiang and 61% in Jialingjiang. The model simulated the 5-day concentrations of suspended solids (SS) fairly well in the headwaters and upper regions of the Jinshajiang, Yalongjiang, and Minjiang watersheds, as shown by R2 values of 0.31–0.65. In the other regions, however, the model underestimated the SS load by up to 72%, and rarely simulated the fluctuation of SS concentration in each river channel during the flood season. These errors led to the underestimation of sediment runoff volume from the whole upper region during the flood season, as shown by the ratio of the simulated sediment load to the observed data at Yichang: 0.69 in the calibration period and 0.68 in the verification period. The ISLSCP precipitation tended to be more frequent and less intense than the measured precipitation. This was probably the main reason why the HSPF did not perform well in all regions at all times.  相似文献   

20.
The effects of pollutants in runoff on the environment have forced the development of several water treatment systems with the aim of reducing this kind of pollution before its final discharge. Nevertheless, many of these systems do not behave satisfactorily and, additionally, there is a low level of confidence in the treatment performance. This paper introduces the results of research on the long-term performance of a laboratory prototype of a system for catchment, pretreatment, and treatment (SCPT) designed to deal with the polluted runoff water. Solid and oil treatment efficiency were the focus of the study. After 14 consecutive simulated rain events, the treatment efficiency levels achieved by the prototype are higher than 80% of solids and 90% of oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号