首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three storm-water wetlands in series were monitored in a heavily urbanized 12.5 ha watershed in Mooresville, North Carolina. Monitoring of this system allowed an examination of the diminishing returns provided by three successive best management practices (BMPs) of a similar type. At least 80% of the total concentration reduction for all pollutants occurred within the first wetland cell. Only the first wetland cell significantly (p<0.05) reduced all pollutants tested. No pollutant was significantly reduced from the outlet of Wetland Cell 2 to the outlet of Wetland Cell 3 (p<0.05). Median complete system (outlet of Wetland Cell 3) effluent concentrations for total suspended solids, total phosphorus, total nitrogen, and turbidity were 8, 0.09, 0.73 mg/L, and 10 NTU, respectively, which compared favorably to published results. Organic nitrogen generated from wetland vegetation seemed to result in a background source of nitrogen in the wetlands, supporting the idea of an irreducible concentration for nitrogen in these systems. The results indicate that the successive BMPs in a series do not perform as well as the first when each BMP uses similar removal mechanisms.  相似文献   

2.
Reduction of storm-water volumes through infiltration is becoming a commonly applied practice in the effort to mitigate the negative hydrologic impacts commonly associated with land development. The hydrologic impacts generally include increases in both the volume and peak flow rate of runoff along with an associated decrease in groundwater recharge. Infiltration best management practices (BMPs) are the foundation of many low impact development and Green infrastructure practices. As the movement to volume reduction is a relatively recent concept, there remains a lack of detailed long-term monitoring data to support the implementation of storm-water infiltration BMPs. Two storm-water infiltration BMPs on the campus of Villanova University located in Southeastern Pennsylvania have been continuously monitored to determine the long-term and seasonal variation related to the engineered infiltration of storm-water runoff. The analysis of continuous monitoring data indicates that both BMPs show considerable seasonal variation but exhibit no evidence of a systematic decrease in performance to date. The seasonal variation of the BMPs is explained primarily by the temperature dependency of the viscosity of water.  相似文献   

3.
Storm-water best management practices (BMPs) are typically assessed using the performance metric of pollutant concentration removal efficiencies. However, debate exists whether this is the most appropriate metric to use. In this study, a storm-water wetland constructed and monitored in the coastal plain of North Carolina is evaluated for water quality and hydrologic performance using four different metrics: concentration reduction, load reduction, comparison to nearby ambient water quality monitoring stations, and comparison to other wetlands studied in North Carolina. The River Bend storm-water wetland was constructed in spring 2007 and was monitored from June 2007 through May 2008. Twenty-four hydrologic and 11 water quality events were captured and evaluated. The wetland reduced peak flows and runoff volumes by 80 and 54%, respectively. Reductions were significant. Concentrations for the following pollutants increased: total kjeldahl nitrogen (TKN), NH4–N, total nitrogen (TN), and total suspended solids (TSS); inflow and outflow concentrations did not change for total phosphorus (TP), while only NO2–3–N and orthophosphorus (OP) concentrations were lower at the outlet. Using a load reduction metric, results were strikingly different, showing positive load reductions of 35, 41, 42, 36, 47, 61, and 49% for these respective pollutants: TKN, NO2–3–N, NH4–N, TN, TP, OP, and TSS. When comparing the effluent concentrations from the wetland to ambient water quality in the Trent River, all effluent nitrogen species concentration were either similar or lower. TP and TSS concentrations leaving the wetland were higher than ambient water quality data. Finally, by comparing pollutant concentrations among different North Carolina wetlands, it is apparent the River Bend wetland received relatively “clean” water and released water with pollutant concentrations comparable to all other studies examined. Major conclusions from this study include: (1) storm-water wetlands sited in sandier soils (such as those of the North Carolina coastal plain) should be considered a low impact development tool and (2) the selection of performance metric has a pronounced bearing on how a BMP’s performance is perceived. Sole reliance on a concentration reduction metric is discouraged.  相似文献   

4.
An urban watershed in Raleigh, North Carolina, was monitored for indicator bacteria during 20 rain events. Results showed elevated levels of E. coli, enterococci, and fecal coliform. Samples were compared based on seasonality and were found to be statistically different (p<0.05), with pairwise comparisons indicating significantly lower concentrations of E. coli and fecal coliform during the winter (p<0.05). Enterococci concentrations were substantially lower in the winter and fall, but no significant differences were found between seasons during pairwise comparisons (p<0.05). Correlation analyses showed multiple significant relationships between antecedent climate parameters, flow characteristics, and indicator bacteria concentrations. More detailed multiple linear regression yielded explanatory variables related to antecedent climate conditions. Variables were generally related to temperature and moisture conditions in the atmosphere and soil. The results of this study show indicator bacteria concentrations significantly vary based on season; however, this variability can partially be explained by antecedent climate data.  相似文献   

5.
Although street sweeping is commonly regarded as a cost-effective storm-water best management practice, there is little quantitative evidence that street sweeping directly improves runoff water quality. In this paper, several previous street sweeping studies were reevaluated using statistical power analysis. Two-group, independent-sample one-sided t-test power analyses were performed using log-transformed event mean concentrations (EMCs) of total suspended solids, suspended sediment concentration or chemical oxygen demand. The effect size between the two groups was estimated using the sweepers’ pickup efficiency, which showed that the failure to detect the difference between mean EMCs of the two sample groups (i.e., unswept and swept groups) is likely due to limited sample numbers. Too few samples, which also resulted in a high coefficient of variation, were analyzed to detect the likely difference between swept and unswept observations. In addition, the temporal gap between street sweeping and subsequent storm events was not controlled to improve statistical power.  相似文献   

6.
Storm-water runoff has been identified as a major cause of coastal water quality degradation. Storm-water outfalls, common in many coastal towns, convey bacteria and other pollutants into the ocean and estuaries. In an effort to minimize this impact, the Town of Kure Beach, North Carolina, installed Dune Infiltration Systems (DIS) at two storm-water outfalls to receive storm-water runoff and allow infiltration beneath the beach dunes. A laboratory column experiment was performed to supplement this installation and determine the potential hydraulic and bacterial removal efficiency of the sand comprising the Kure Beach dunes. Columns constructed using sand collected at different depths of the dune were used to analyze the affect of bacteria application on infiltration and to examine the changes in bacteria removal that occur as infiltration rates are affected by bacteria-laden water application. Sand columns were loaded over a 60-day period with either bacteria-free storm water or storm water spiked with Escherichia coli. The seepage rate for the bacteria-spiked storm-water treatment was significantly lower (p<0.05) than the seepage rate of the bacteria-free treatment, particularly toward the end of the study. Bacteria application likely compounds the impact of sediment clogging at the sand/storm-water interface. This study indicates the need for maintenance when implementing a DIS or similar sand filter to maintain design infiltration rates, especially if reduced infiltration rates are not planned for in the design. However, a decrease in seepage rate was correlated with a decrease in effluent bacteria concentration in the bacteria-spiked storm-water sand columns. Thus, optimization is required to provide maximum infiltration of storm-water while maintaining bacteria removal efficiency.  相似文献   

7.
Vegetated storage-infiltration best management practices (BMPs) have become an increasingly popular means of attenuating and treating runoff from developed land. However, the hydrologic and pollutant removal performances of these facilities can be highly variable. A mathematical model of an idealized BMP was developed in order to quantify the impact of variable hydrologic and pollutant concentration input on BMP performance by simulating the treatment performance of the model system during 1,250 non-steady-state storm events generated based on historic Maryland rainfall data. The model BMP was effective in attenuating volume (42% total volume reduction) and peak flow (median peak output to peak input flow ratio was 0.058). The simulated mean effluent pollutant event mean concentration was much less than the influent (0.284 compared with 1.51 mg/L) and the overall mass load reduction was 92%. However, the performance parameters demonstrated significant variability. Consequently, the results suggest a need to incorporate into BMP performance guidelines the impact of the variable influent hydrologic and pollutant concentration characteristics. Emphasis should be placed on discharge water quality and statistical distributions rather than on single-percent removal values.  相似文献   

8.
In practice, the challenge of storm-water low-impact-development (LID) design is often related to how to quantify the effectiveness of a LID layout. In this study, the watershed imperviousness was chosen as a basis to evaluate the performances of various LID designs. Often, LID designs apply cascading planes to drain the runoff flow from the upstream impervious area to the downstream pervious area. In this study, the conventional area-weighting method is revised with a pavement-area-reduction factor (PARF) to produce the effective imperviousness. PARF is employed as an incentive index to quantify the on-site runoff volume reduction and cost savings from downsized sewers. Two sets of PARF are derived: conveyance-based and storage-based LID designs. The conveyance-based LID approach is to drain runoff flows on various porous surfaces while the storage-based LID approach is to temporarily store runoff flows in an on-site basin. For a specified LID layout, the PARF provides a consistent basis to translate the infiltration and storage effects into the reduction on the area-weighted imperviousness. The nondimensional governing equation derived in this paper indicates that the PARF depends on the ratio of the soil infiltration rate to rainfall intensity, the ratio of receiving pervious area to upstream impervious area, and the on-site storm-water storage capacity. The PARF serves as a basis for the engineers, planners, and/or developers to select a LID design and also for regulatory agencies to assess meritorious credits for cost savings.  相似文献   

9.
Bioretention is a stormwater treatment practice that has gained popularity due to its aesthetics, potential to reduce flooding, and early documented improvements to stormwater quality. A bioretention cell in an urban setting was examined in Charlotte, N.C. from 2004 to 2006. Flow-weighted, composite water quality samples were collected for 23 events and analyzed for TKN, NH4-N, NO2-3-N, TP, TSS, BOD-5, Cu, Zn, Fe, and Pb. Grab samples were collected from 19 storms for fecal coliform and 14 events for Escherichia coli (E. coli). There were significant reductions (p<0.05) in the concentrations of TN, TKN, NH4-N, BOD-5, fecal coliform, E. Coli, TSS, Cu, Zn, and Pb. Iron concentrations significantly increased (p<0.05). NO2-3-N concentrations were essentially unchanged. Efficiency ratios for TN, TKN, NH4-N, TP, and TSS were 0.32, 0.44, 0.73, 0.31, and 0.60, respectively. Fecal coliform and E. coli efficiency ratios were 0.69 and 0.71, respectively. Efficiency ratios for Zn, Cu, and Pb were 0.77, 0.54, and 0.31, respectively. Concentrations of Fe increased by 330%. The peak outflow of the bioretention cell for 16 storms with less than 42?mm of rainfall was at least 96.5% less than the peak inflow, with a mean peak flow reduction being 99%. These results indicated that in an urban environment, bioretention systems can reduce concentrations of most target pollutants, including pathogenic bacteria indicator species. Additionally, bioretention can effectively reduce peak runoff from small to midsize storm events.  相似文献   

10.
Storm water ocean outfalls discharging into recreational waters pose a human health threat because of increased potential exposure to bacteria and other pathogens. The dune infiltration system (DIS) was designed and implemented at two ocean outfall sites in response to concerns by the North Carolina Department of Transportation and the town of Kure Beach, North Carolina The systems were designed to divert storm water runoff from 1.9?ha (4.7 acre) and 3.2?ha (8.0 acre) watersheds into the beach dunes. Following construction, data were collected from 25 storms during March through October 2006. The systems captured a combined total of nearly 1,800??m3 (63,500??ft3), or 95% of the influent storm water runoff—a significant reduction of runoff volume and peak flow discharging directly onto the beach (p<0.0001). Fecal coliform and enterococci concentrations were measured in the inflowing storm water runoff and groundwater downslope of the systems. Both groundwater bacteria concentrations near the systems were significantly lower than the bacteria concentrations in the inflowing storm water (p<0.001). Furthermore, groundwater fecal coliform concentrations after implementing the DISs were statistically similar to preconstruction levels (p<0.05). The initial results are promising, and the system should be considered for more widespread use. However, further comprehensive research is recommended to more thoroughly understand the viability of the DIS as a storm water best management practice and the fate and transport of the bacteria within the dunes.  相似文献   

11.
Level spreaders are commonly used in combination with riparian buffers as a stormwater best management practice in many parts of the United States. These systems have not been extensively studied in urbanized environments to determine if they can provide a long-term water quality benefit. In winter 2005, 24 level spreaders were evaluated in the Piedmont of North Carolina. Detailed observations were made at 20 of these locations. The results of the study indicate that level spreaders may not be the versatile structure they are perceived to be. No level spreader-riparian buffer system was able to provide diffuse flow through the riparian buffer from the level spreader to the stream. Common causes for failure to maintain diffuse flow included: lack of maintenance (12 cases), poor design (11), riparian topography/content (11), level spreader lip not level (seven), built with easily eroded materials (six), poor construction methods (three), and human interference (two). This field evaluation indicates that level spreader systems may need design revisions, construction guidance, and maintenance requirements before they continue to be used en masse.  相似文献   

12.
Increases in stream temperatures by heated storm-water runoff from impervious surfaces are a serious environmental problem. An underground detention with slow-release facility is a versatile storm-water best management practice (BMP) for buffering high flows. Temperature reductions in underground storm-water storage BMPs, however, have not been quantified. A field study on an underground detention BMP located in Maryland was undertaken to characterize its effect on storm-water runoff temperatures. In colder months, when the runoff temperature ranged from 5 to 15°C, small or no temperature change was observed. Runoff produced during summer storm events, however, with event mean temperatures over 20°C, exhibited mean temperature reductions of 1.6°C through the BMP. While statistically significant, the reductions were not sufficient to cool the summer runoff discharges below the Maryland Class III temperature standard (20°C) 100% of the time. The results indicate that underground facilities can moderate high runoff temperatures, but that more efficient designs are needed for heat transfer.  相似文献   

13.
Three bioretention field sites in North Carolina were examined for pollutant removal abilities and hydrologic performance. The cells varied by fill media type or drainage configuration. The field studies confirmed high annual total nitrogen mass removal rates at two conventionally drained bioretention cells (40% reduction each). Nitrate-nitrogen mass removal rates varied between 75 and 13%, and calculated annual mass removal of zinc, copper, and lead from one Greensboro cell were 98, 99, and 81%, respectively. All high mass removal rates were due to a substantial decrease in outflow volume. The ratio of volume of water leaving the bioretention cell versus that which entered the cell varied from 0.07 (summer) to 0.54 (winter). There was a significant (p<0.05) change in the ratio of outflow volume to inflow volume when comparing warm seasons to winter. Cells using a fill soil media with a lower phosphorus index (P-index), Chapel Hill cell C1 and Greensboro cell G1, had much higher phosphorus removal than Greensboro cell G2, which used a high P-index fill media. Fill media selection is critical for total phosphorus removal, as fill media with a low P-index and relatively high CEC appear to remove phosphorus much more readily.  相似文献   

14.
This research presents an initial study of the impacts of storm-water infiltration on a shallow unconfined aquifer at a bioinfiltration best management practice (BMP) on the campus of Villanova University. The study site is a vegetated infiltration basin with a 0.52?ha drainage area consisting of parking areas and recreational fields and features approximately 35% directly connected impervious area. The research utilized continuous monitoring of precipitation, groundwater elevation, and groundwater temperature in conjunction with surface water hydrologic modeling to assess the duration, magnitude, and extent of groundwater mounding at a storm-water infiltration BMP. Results indicate that precipitation greater than 1.80?cm causes increased mounding at wells adjacent to the site. In addition, it was found that precipitation less than approximately 1.80?cm leads to larger increases in groundwater elevation at an upgradient control well located near the edge of a large grass field. The extent of groundwater mounding is observed to be localized to the BMP and does not extend a significant distance downgradient. In addition, the magnitude and duration of groundwater mounding is related to both infiltration rate and groundwater temperature, such that cooler temperatures correlate to increased mounding. This study demonstrates the utility of groundwater monitoring for the purpose of BMP hydraulic performance assessment, and recommends that additional research be conducted in the future and that groundwater monitoring be considered for site monitoring plans.  相似文献   

15.
Controlling soil erosion during and after construction is a major concern due to the impacts of sediment on stream water quality, and many studies have focused on the effectiveness of erosion control best management practices (BMPs) to prevent erosion. However, their ability to reduce runoff volume and peak discharge is not commonly studied or integrated into storm water designs due to lack of data and design guidelines. This study investigated runoff characteristics (total runoff, peak flow rate, curve number, and rational method runoff coefficient) from bare compacted soil conditions with and without erosion control BMPs, with an emphasis on compost erosion control blankets (CECBs), at three different slope (2H:1V, 3H:1V, and 4H:1V). Experiments were performed in the San Diego State University, Soil Erosion Research Laboratory on a 3-m by 10-m indoor titling soil bed using simulated rainfall based on conditions specified in ASTM D-6459. Eleven erosion control BMPs were evaluated at a slope of 2H:1V, three at 3H:1V, and three at 4H:1V. The variations in slope were used to assess the effects of slope and CECB thickness on runoff. The results from this study provide new insight regarding the runoff characteristics from bare soil and erosion control BMPs that can be used to improve construction-site storm water design. The results show that 2.5- and 5.0-cm-thick CECBs on top of netting or an excelsior fiber blanket provided a significant reduction in runoff relative to the bare soil and the other BMPs (e.g., 1.3-cm CECBs, other blankets) due to water storage within the CECB, the mass of the CECB providing a strong bond between the soil surface and the bottom of the blanket reducing the potential for flowing water from coming in contact with the soil surface, and the netting/blanket under the CECB providing additional friction that helps keep the CECB from sliding down slope. The results show that slope impacts on runoff are minimal but that as CECB thickness increases runoff was reduced due to the added storage within the blanket. The results from this study can be used to aid in the selection of CECB thickness and to assess the effects of CECBs on runoff for more efficient cost effective storm water designs.  相似文献   

16.
In response to water quality and quantity issues within the Stroubles Creek watershed in Blacksburg, Virginia, a retrofit bioretention cell (BRC) was installed to collect and treat runoff from an existing parking lot. The BRC was completed in July 2007, and 28 precipitation events were monitored between October 2007 and June 2008. For each storm, inflow and outflow flow-weighted composite samples were collected and analyzed for suspended sediment, total nitrogen, and total phosphorus. The inflow and outflow concentrations and loads, as well as total inflow and outflow volumes and peak flow rates, were analyzed to evaluate BRC efficiency. Overall, the BRC successfully reduced flow volumes and peak flow rates leaving the parking lot by 97 and 99%, respectively. Cumulative mass reductions for sediment, total nitrogen, and total phosphorus all exceeded 99% by mass. The findings of this study have significant implications for areas with karst geology: (1)?current design recommendations of lining the bottom of BRCs with clay may not be sufficient to prevent large amounts of water from infiltrating into surrounding soils; and (2)?in areas with significant elevation changes, designing BRCs deeper than the typical 0.6–1.2?m increases the feasibility of retrofits and provides substantial water quality and quantity benefits.  相似文献   

17.
Bioretention has significant potential for reduction of bacterial levels in urban storm-water discharge. The long-term performance of bacteria removal was evaluated using column studies over an 18-month period, during which synthetic urban storm-water runoff was loaded into conventional bioretention media (CBM) columns once every two weeks. CBM initially achieved a mean of 72% removal efficiency for Escherichia coli O157:H7 strain B6914. The removal efficiency improved over time, achieving 97% or higher efficiency after six months. The trapped B6914 cells died off rapidly between runoff application events. Mechanistic studies indicated that decreased porosity and increased hydrodynamic dispersion observed in mature CBM are favorable for improvement of physical straining of cells and for bacterial adhesion. The temporal change in surface charge on CBM may not be a key factor in the improved bacterial removal. Indigenous protozoa in the CBM grew logistically, and may play an important role in enhancement of bacterial capture and rapid decline in numbers of trapped bacteria via predation. Overall, the long-term bacterial removal process in CBM can be efficient and sustainable.  相似文献   

18.
Structural best management practices (BMPs) have become a tool for stormwater managers to achieve water quality improvement and regulatory compliance. Existing empirical evaluation of BMP performance is valuable, but has limited applicability to predict BMP performance over extended durations under a variety of storm types. This study applies a dynamic model to simulate BMP performance over a 10-year period. The BMP model used hourly output from a calibrated and validated land-use model to evaluate two BMP types: a retention facility and a flow-through swale. The model evaluated each BMP alone and in series targeting volume, total suspend solids, and total copper. Effectiveness was based on load reduction, event mean concentrations, and frequency of exceedence of relevant water quality standards. The model predicted over 60% removal of solids and copper over most conditions; however, effectiveness was reduced during large storms and wet years. Although performance was similar based on load reduction and water quality standard exceedence, the latter was most sensitive to storm size. This study demonstrates that BMP modeling can help managers understand expected BMP performance over a range of storms, time periods, and design parameters, and, perhaps more significantly, evaluate BMPs in series.  相似文献   

19.
This paper documents an experimental study conducted to evaluate the performance of two commonly used sediment treatment control products, albeit with contrasting treatment technologies: a fiber roll or wattle (i.e., three-dimensional filter) and a perforated pipe wrapped by a pervious geosynthetic material (i.e., boundary filter). Emphasis was placed on (1) simulating field conditions and (2) describing performance via runoff, sediment yield, and particle-size measurements. Scaling problems typically associated with erosion experiments were minimized by using standard-size products (not scaled models) and a large-scale erosion bed with overhead rainfall simulators, with which dominant forms of soil erosion and sediment transport were attained. The results indicate that the experimental procedures and measurements utilized are appropriate for quantifying the erosion control performance of the products tested. In particular, the measurements revealed the important role of installation quality on BMP performance. Results also indicate that the magnitudes of peak discharge and total runoff from compacted, bare soils on steep slopes can approach values typical of highly impervious surfaces.  相似文献   

20.
Storm-water experts agree that the currently used best management practice (BMP) percent removal methodology metric has many flaws, and some have suggested using a BMP effluent concentration metric. This case study examines establishing an effluent target concentration for BMPs that relates to the health of macroinvertebrates in the receiving water. In North Carolina, 193 ambient water quality monitoring stations were paired with benthic macroinvertebrate health ratings collected in very close proximity. Water quality for the sites ranged from excellent to poor and was divided into three distinct ecoregions: Mountain, Piedmont, and Coastal. Statistically significant relationships were found in one or more ecoregions for dissolved oxygen, fecal coliform, NH3, NO2?3?N, total Kjeldahl nitrogen, total nitrogen (TN), and total phosphorus (TP). BMPs can then be selected and designed to meet these target effluent concentrations. Based upon this research, a development, and therefore set of BMPs, in Piedmont North Carolina could be required to release TN and TP effluent concentrations of 0.99 mg/L and 0.11 mg/L, respectively. These concentrations are both associated with “good” benthos health. The new method was most effective in the Piedmont ecoregion, however with more data collection, the Mountain and Coastal ecoregions may also benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号