首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbon Adsorption and Air-Stripping Removal of MTBE from River Water   总被引:1,自引:0,他引:1  
Through 1998, methyl tertiary-butyl ether (MTBE) was the most commonly used fuel oxygenate in Reno, Nevada. Winter-use of oxygenated gasolines is required in areas of the country that exceed carbon monoxide air quality standards. MTBE has not been detected in Reno’s raw water sources, but treatment alternatives must be assessed to fully prepare for possible contamination events. In this research, bench-scale studies using activated carbon and air stripping were conducted to evaluate the treatability of a high concentration of MTBE in Truckee River water, which is the primary surface supply for the Reno area. Results indicated that neither method appears practical for treating MTBE-laden water for one day at a 1.14×108?L/day (30 MGD) treatment plant. The capital costs estimated for full-scale application of these processes are approximately $5 million each. Estimated treatment costs for activated carbon and air stripping are approximately $0.043/L ($0.161/gal) and $0.047/L ($0.177/gal), respectively. Temporary closure of treatment facilities may be the best response to an accidental spill.  相似文献   

2.
The rapid small-scale column test (RSSCT) has become a popular method for sizing granulated activated carbon (GAC) systems and columns for water treatment facilities. In this procedure, the GAC is ground and a specific size fraction is used for the RSSCT. Since GAC is produced and activated using different processes from different starting materials (e.g., bituminous, lignite, wood, etc.), the possibility exists that the extent of activation and, hence, the adsorptive capacity and surface reactivity may vary throughout the GAC particles. This would be the case if there were less activated inner cores in the GAC particles. If there is a variation in the sorption properties throughout the GAC particles, then grinding the GAC may result in smaller particles that have different properties than the bulk GAC. This study was carried out to test this commonly assumed hypothesis that the limited-sized ground particles represent the same adsorptive properties as the bulk GAC. Four activated carbons (manufactured from different source carbons) were studied. Gas adsorption tests determined the physical morphology, Boehm’s titrations checked the chemical nature of the surface oxides, and the Mohs hardness test was performed on all bulk GACs and ground fractions. No apparent differences were found in the total surface area, cumulative pore volume, or pore size volume of fractions generated by grinding activated carbons. In addition, the Boehm technique did not identify any significant differences in the chemical nature of the surfaces of the various size fractions of GAC. The Mohs hardness test did not indicate any variations in the hardness of the bulk GAC, the ground fractions, and the unground core. Based on the methods and materials used, the underlying assumption in the RSSCT analysis—that there are no variations in the different size fractions of the ground GAC—appears to be correct.  相似文献   

3.
The adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was investigated in the presence and absence of effluent organic matter (EfOM) at an environmentally relevant concentration range (0.1–500??μg/L). Adsorption of PFOS and PFOA to PAC fitted the Freundlich model well (r2>0.98), and adsorption capacity of PFOS (KF = 17.48) and PFOA (KF = 10.03) in the absence of EfOM was more than one order of magnitude higher than that in the presence of EfOM (KF = 0.66 for PFOS, KF = 0.20 for PFOA), indicating that EfOM greatly reduces the adsorption capacity of PAC. Moreover, EfOM was characterized by ultrafiltration, and fractions of nominal molecular weights were obtained to investigate their effect on the PFOS and PFOA adsorption. The fraction of <1??kDa had greater effect on adsorption than the fraction of >30??kDa, indicating that the similar molecular size of target compounds was the major contributor to adsorption competition. Additionally, biosorption of PFOS and PFOA to activated sludge fitted the linear isotherm (r2>0.9) within a concentration range of 50–400??μg/L. On the basis of our data, the estimated partition coefficient, Kd, was 729??L/kg for PFOS and 154??L/kg for PFOA, respectively, suggesting that PFOS and especially PFOA have a low tendency to partition onto sludge.  相似文献   

4.
A mathematical model is developed to predict continuous adsorption-regeneration cycling of volatile organic compounds (VOCs) on activated carbon fiber cloth (ACFC) at the indoor VOC concentration levels. The adsorption-regeneration model incorporates both the adsorption equilibrium and mass transfer fundamentals. It assumes local equilibrium between the gas-phase and the solid-phase, and axially dispersed-flow, film transfer, and intraparticle transport by surface and pore diffusion. Successful agreement between model simulations and experimental data was obtained and the kinetic properties of the adsorption/regeneration cycling on the ACFC were characterized. For the adsorption process, the film transfer is the dominant factor for mass transfer at low flow rates (45–184 L/min), and the intraparticle mass transfer rate controls over the gas-phase rate as the flow rates increase. The regeneration concentration profiles are most sensitive to the adsorption isotherms at the temperatures of interest, especially as desorption is initiated. The surface diffusivity also contributes to the shape of the regeneration profile: the tailing of desorption profile shifts up with the increase of surface diffusivity.  相似文献   

5.
Increasing attention is being paid to health and environmental risk as a result of the presence of trace steroid estrogens in the effluent discharged from municipal sewage treatment plants. This paper focuses on assessment of removal of these trace compounds using 3H-labeled estrone as the model compound. Jar tests over a range of ferric chloride dosages and pH conditions showed that coagulation was ineffective in removal of estrone from secondary effluent. The experiments showed that the combination of powdered activated carbon (PAC) and microfiltration could be effective for removal of trace estrone from water. The rate and extent of estrone removal by PAC are functions of PAC dosage and retention time of PAC in the system. Mathematical analysis of the results using a homogeneous surface diffusion model indicates that the adsorption of estrone on PAC can be limited by film diffusion and internal surface diffusion. The surface and film mass transfer coefficients were determined to be 1.59×10?9?cm2/min and 0.6 cm/min, respectively, under the conditions used.  相似文献   

6.
This note presents a simple model to quantify the preloading effect of naturally occurring organic matter (NOM) in water on the adsorption capacity of activated carbon for a trace synthetic organic chemical (SOC). The model was developed from the Dubinin–Astakhov (DA) equation based on the assumption that the NOM preloading irreversibly reduced the limiting adsorption pore volume for the target SOC. Given that the DA-n value equal to one, the model reduces to a form similar to the one obtained by modifying the Freundlich equation directly. By assuming that the reduction of the limiting adsorption pore volume was proportional to the volume of NOM adsorbed, the NOM preloading effect was correlated directly to the amount of total organic carbon preloaded on the carbon. The resulting model was then compared with the experimental data in the literature. This simple model may be useful for certain practical applications that require only the estimation of the NOM preloading effect on the adsorption capacity of a target SOC from natural water.  相似文献   

7.
Adsorption is an effective remediation technique for petroleum hydrocarbons because of its ease of use and high efficiency. The utilization of high-carbon content industrial by-products in such applications can present significant economic and environmental advantages. In this study, batch adsorption tests and petrographic analyses were used to investigate the adsorption of two nonpolar petroleum contaminants, naphthalene and o-xylene, onto seven fly ashes with varying carbon contents, with powdered activated carbon (PAC) as a control. Six equilibrium isotherm models were used to evaluate the batch data. The results yielded nonlinear sorption isotherms characterized by high sorption capacity at low concentrations. The naphthalene and o-xylene adsorption capacity of the fly ashes was correlated with the unburned carbon content, specific surface area of the sorbent, and the percentage of the anisotropic and isotropic carbon content of the ash. On the basis of the Polanyi-Dubinin-Manes model, a pore-filling mechanism is the dominant mechanism for the adsorption of the nonpolar organic chemicals onto PAC, whereas the adsorption onto fly ash is likely to be governed by the unburned carbon content and the specific surface area of the ash.  相似文献   

8.
A model for the removal of pesticides by granular activated carbon (GAC) filtration in full-scale water treatment is presented. The model describes GAC filtration in a pseudo-moving-bed configuration, where two filters are operated in series and after breakthrough the first filter is regenerated and becomes the second filter. The influent of the second filter is changing due to gradual breakthrough of the first filter. Therefore, a dynamic model is developed based on kinetics, equilibrium, and mass balance equations. The model is calibrated and validated on data of full-scale and pilot plants. Operational strategies are evaluated of two different cases. From this study it can be concluded that a dynamic mathematical model can be successfully used to evaluate the performance and operation of full-scale GAC filters for pesticide removal and can be used for operational decision support. Data obtained from practice can be used for calibration without additional laboratory work.  相似文献   

9.
The phosphoric acid activated carbon (PAC) was derived from waste wooden pallets by a two-step chemical activation technique, carbonization and phosphoric acid activation in sequence. A widely used commercial activated carbon, Calgon Filtrasorb 400 (F400), was studied in parallel for comparison. The physical properties and surface chemistry of the activated carbons were characterized using BET-N2 adsorption, elemental analysis, Boehm’s titration, Fourier transform infrared spectroscopy, and x-ray photoelectron spectroscopy. PAC possessed physical properties (surface area and pore volume) that were comparable to those of F400, but displayed distinct surface chemistry in terms of pHPZC, surface acidity and basicity, and surface functional groups. Batch studies were conducted to evaluate the methylene blue (MB) and phenol adsorption capacity of PAC and F400 and their dependence on pH, contact time, and initial adsorbate concentration. Experimental results showed that the solution pH slightly influenced the adsorption of MB and phenol on F400, whereas it had no effect on their adsorption on PAC. Equilibrium adsorption data were fitted with an Langmuir isotherm equation. In comparison with F400, PAC showed a higher adsorption capacity for MB but lower for phenol. Given the comparable physical properties of PAC and F400 and the polar nature of MB and phenol, surface chemistry of the two carbons appeared to determine the adsorption mechanism and capacity. The strongly negative surface of PAC, due to phosphoric acid activation, facilitated the adsorption of positively charged MB, whereas the presence of oxygen-containing functional groups on PAC inhibited phenol adsorption.  相似文献   

10.
Linear regression techniques were used to develop practical models to predict total organic carbon (TOC) breakthrough in bituminous granular activated carbon (GAC) adsorbers. Models were developed for two field-scale GAC sizes (8×30 and 12×40?mesh) and two empty bed contact times (EBCTs) (10 and 20 min). Model input parameters include two water quality variables, influent TOC concentration (TOC0) and pH, that impact performance. The dependent variables for the models were normalized breakthrough time, throughput in bed volumes, to six fractional (TOC/TOC0 = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7) and three mass (TOC = 1.0, 1.5, and 2.0 mg/L) effluent concentrations. Model development was performed using small-scale breakthrough data from 35 different source waters; external model validation was performed with small-scale breakthrough data from 14 source waters; a sensitivity analysis was performed to ensure that the models effectively capture expected breakthrough trend; and a scalability test was performed to verify the models’ ability to predict breakthrough for field-scale GAC adsorbers.  相似文献   

11.
Bench-scale experiments investigated the effect of electrolyte mixing on the effectiveness of an electrochemical reactor for the reactivation of granular activated carbon (GAC). Two different GACs (F-400 and WV-B) were loaded with phenol via batch adsorption tests, then electrochemically reactivated and finally reloaded with phenol. Reactivation was conducted in a recirculating flow reactor with a 0.1?M NaCl solution as the electrolyte. Cathodic reactivation was more efficient than the anodic reactivation and increasing the degree of electrolyte mixing decreased the cathodic reactivation efficiencies, while there was no significant change in the anodic reactivation efficiencies. Higher degrees of electrolyte mixing decreased the local pH at the cathode and consequently reduced the desorption driving force and therefore reduced the reactivation efficiency. The electrolyte mixing lowered the cell voltage. However, this advantage was overshadowed by the increased energy consumption required for the electrolyte pumping, the reduction of the oxidation rate of phenol, and a 20% reduction in the reactivation efficiencies. Thus, electrolyte mixing of the electrolyte is not recommended in the electrochemical reactivation of GAC.  相似文献   

12.
A two-stage mathematical model was developed to describe adsorbate removal in a dead-end powdered activated carbon/ultrafiltration (PAC/UF) membrane process. Para-nitrophenol (PNP) was used as the model organic compound. The first stage accounted for adsorbate removal during transport from the initial PAC contact with the PNP solution to the membrane system, and the second stage accounted for additional PNP removal due to the retention of the PAC in a growing bed on the membrane surface. The PAC adsorptive capacity was described using the Langmuir isotherm, whose parameters were estimated from isotherm experiments. Transport of the PNP through the PAC particle was described using the homogeneous surface diffusion model and the surface diffusivity was estimated from batch experiments. The two stage model predicted the effluent concentrations from the PAC/UF process during the early stages of the experiments, but model improvements are required to more accurately predict the latter stages. A batch model can be used to describe the effluent PNP concentration from the PAC/UF process if dispersion is neglected.  相似文献   

13.
A model of adsorption and thermal desorption was built and validated from experiments performed under various operating conditions. The abatement increased with the reduction in the inlet concentration and with the increase of bed height. Particles at the end of adsorption step were saturated although their pores were not completely filled with acetone. Adsorption yielded an increase of the bed temperature at the beginning of the tests, where the separation rate had the maximum value nearly equal to 100%, but the temperature rise of the bed remained much smaller than that obtained in fixed-bed adsorption for similar conditions. Simulations of a process operating with successive cycles of adsorption and thermal desorption was then performed. Desorption appeared to have a reasonable duration compared to adsorption. Calculations proved that a third reactor for transient states from adsorption to desorption or from desorption to adsorption that would achieve the cooling or the heating of particles was not necessary. Results show the feasibility of the adsorption–desorption process of volatile organic compounds in fluidized beds of granular activated carbon.  相似文献   

14.
Nanoparticles have emerged as promising adsorbents for water purification. In this study, nanoscale carbon black was employed to remove natural organic matter (NOM) from water in the presence and absence of coagulation. Standard Suwannee River NOM was employed as the targeted pollutant. In the absence of coagulation, more than 60% NOM removal was achieved by carbon black adsorption. A higher hydrogen ion concentration (pH) (3–5) was favorable for NOM removal. More than 35% NOM was removed by carbon black adsorption in the first 20 min, and the adsorption of NOM onto carbon black occurred within about 2 h. Proper stirring was essential for the mixture of NOM and carbon black, while insufficient stirring or overstirring decreased NOM removal efficiency. When low dosages of coagulants were used in combination with carbon black at pH 6–7, the removal efficiency of NOM increased significantly. Depending on the coagulant, the sequencing of adsorption and coagulation can be important. Almost 90% NOM was removed in 15 min by carbon black adsorption and alum coagulation, which is a higher removal than for conventional treatment. This study indicated that carbon black might be an important adsorbent for NOM removal in water treatment in combination with low doses of alum.  相似文献   

15.
Adsorption equilibrium and kinetics of carbon disulfide in water by granular activated carbon (GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) were investigated and compared in an effort to elucidate the fundamentals for optimizing the control process design. It has been shown that the BET expression can satisfactorily describe the adsorption equilibrium of carbon disulfide (CS2) on GAC, PAC, and ACF and the corresponding kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the CS2 adsorption is the rate-limiting step. A two-phase mathematical model was developed to simulate CS2 transfer in fixed-bed operation filled with the GAC, PAC, and ACF, and the equilibrium and kinetics information is subsequently used in the model to characterize the dynamics of adsorption. The model includes mechanisms such as axial dispersion, advection, liquid-to-solid mass transport, and intraparticle mass transport by pore and surface diffusion. It is manifested that the model was able to predict the dynamic breakthrough curve of CS2 in a fixed-bed adsorption column filled with GAC, PAC, and ACF at varied conditions (standard deviations for 1.5?cm/min is 12.13% and for 2.2?cm/min is 16.12%), based on BET-3 equilibrium and second-order kinetics, which indicates that the methodology proposed by this work could be employed for adsorbents selection, adsorption design, and process optimization for CS2 waste-water emission control.  相似文献   

16.
Four different granular activated carbons (GACs) were tested at the bench scale for the adsorption of disinfection by-product (DBP) precursors and were found to be spent at different rates for the Lincoln (Nebraska) water system. This study examined the value of several physical and chemical tests for ranking the potential of different GACs for DBP precursor removal for one water utility. The surface area in the micro- and mesopore range and tannin adsorption were found to be useful indicators of DBP precursor adsorption potential. GACs with the largest surface in the 5?to?50?? pore-width range were able to treat the largest amount of water before being spent. A high value obtained in the tannin adsorption test was observed for the GACs that treated large water volumes.  相似文献   

17.
Adsorption isotherms for alkane, aromatic, and ketone vapors were determined for activated carbon fiber cloth, tire-derived activated carbon and coal-derived activated carbon adsorbents. Physical and chemical properties of the vapors and adsorbents were used to interpret these results that were obtained from 20 to 50°C, with a more limited data set at 125 and 175°C and relative pressures between 0 and 0.99. Fitted isotherms using the Freundlich and Dubinin–Radushkevich adsorption models had mean total relative errors <5.6 and 9.2% for the microporous and mesoporous/macroporous adsorbents, respectively, at the temperature range from 20 to 50°C. The predictive direct quantitative structure activity relationship model had mean total relative errors <9.7 and 61% for the microporous and mesoporous/macroporous adsorbents, respectively, at the temperature range from 20 to 50°C without requiring experimental input.  相似文献   

18.
Activated-carbon-fiber cloth (ACFC) is an alternative adsorbent to granular activated carbon (GAC) for removing and recovering organic vapors from gas streams. Electrothermal desorption (ED) of ACFC provides rapid regeneration while requiring less energy compared to traditional regeneration techniques used with GAC. This paper provides proof-of-concept results from a bench-scale ACFC adsorption system. The automated system captured 1,000 ppmv of hazardous air pollutants/volatile organic compounds (HAPs/VOCs) from air streams and demonstrated the use of ED, using ac voltage, to recover the HAP/VOC as a pure liquid. The desorbed HAP/VOC condensed onto the inner walls of the adsorber and was collected at the bottom of the vessel, without the use of ancillary cooling. Seventy percent of the HAP/VOC was collected per cycle as condensate, with the balance being retained in the regenerated adsorber or recycled to the second adsorber. ED with in-vessel condensation results in minimal N2 consumption and short regeneration cycle times allowing the process to be cost competitive with conventional GAC-based adsorption processes. This technology extends the application of carbon adsorption systems to situations that were previously economically and physically impractical.  相似文献   

19.
Activated carbon cloths (ACCs) are recently developed adsorbents that could be used in many air treatment applications. The use of the Joule effect heating as a regeneration process offers many possibilities in terms of desorption operating conditions to adapt the cloth process to the constraints of particular industrial applications. Hence, this paper presents ACC physical properties and adsorption–desorption cycles performed on a pilot plant to determine the influence of the desorption conditions on the desorbate quality. Two examples of activated carbon cloth processes for specific industrial applications are then presented. The role of the first one is to concentrate an industrial effluent upstream of recovery facilities. The second application is for indoor air treatment, where the desorbate quality is not the major interest but rather the development of a very simple system with an easily handled filter.  相似文献   

20.
Experimental and modeling studies were conducted for the adsorption of phenol from aqueous solutions onto activated carbon in fixed beds with the adsorbent particles layered according to particle size. In the conventional stratified cylindrical adsorber (SCA), the particles were layered according to natural stratification, and increased in size with column depth. In the reverse stratified tapered adsorber (RSTA), the particle size decreased with column depth, and the fluid velocity decreased in the direction of flow. Experimental data indicate that for a uniform particle size distribution, the breakthrough time for the RSTA was about 60% higher than for the SCA under identical carbon loading and flow conditions. The homogeneous solid phase diffusion model with Linear-Freundlich isotherm was used to model the layered adsorbers. It provides excellent predictions for breakthrough curves at various column depths. Bed capacity utilization can be increased with the RSTA due to the sharpening of the solute front, and this will translate into lower capital and operating costs for the carbon adsorption system due to the smaller unit required, lower carbon inventory, and lower pumping costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号