首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was undertaken to investigate the influence of cold temperatures on the seismic behavior of reinforced concrete members. This paper summarizes the results of Phase I of a multiphase research project that consisted of the reversed cyclic testing of four identical large scale reinforced concrete circular columns subjected to temperatures ranging from ?40°C (?40°F) to 20°C (68°F). An extensive literary review is also presented. It was found that most of the past research focused on the material level, i.e., the independent behavior of plain concrete and reinforcing bars. Data collected from past works were complemented with the results obtained from the material tests performed in this research, and used to develop empirical equations for the estimation of the mechanical properties of concrete and steel reinforcement at low temperature. Past research shows an increase in strength without any loss in the deformation capacity of plain concrete and reinforcing steel bars tested at low temperatures. The results of this study show a reduction in the displacement capacity of reinforced concrete members tested at freezing temperatures.  相似文献   

2.
A technique for strengthening damaged concrete beams using prestressed carbon fiber reinforced polymer (CFRP) sheets was developed at Queen’s University and the Royal Military College of Canada. As part of this study, an anchorage system was developed to directly prestress the CFRP sheets by jacking and reacting against the strengthened concrete beam itself. The feasibility and effectiveness of using bonded prestressed CFRP sheets to strengthen precracked concrete beams at both room (+22°C,+72°F) and low (?28°C,?20°F) temperatures have been investigated experimentally. Materials and prestress changes due to temperature variations that would affect and cause changes in flexural behavior were studied. The strengthened beams showed significant increases in flexural stiffness and ultimate capacity as compared to the control-unstrengthened beams. The flexural behavior of the strengthened beams was not adversely affected by short-term exposure to reduced temperature (?28°C,?20°F). In addition to the experimental investigation, analytical models were developed to predict the overall flexural behavior of the strengthened beams during prestressing of the CFRP sheets and under external loading at both room and low temperatures. The model accurately predicted the flexural beam behavior. Improved serviceability behavior and higher strength were predicted for beams strengthened with the bonded prestressed CFRP sheets.  相似文献   

3.
Seismic Behavior of Posttensioned Concrete-Filled Fiber Tubes   总被引:1,自引:0,他引:1  
Precast segmental construction technique is an excellent candidate for economic rapid bridge construction in highly congested urban environments and environmentally sensitive regions. This paper presents the seismic behavior of four hybrid segmental columns consisting of precast posttensioned concrete-filled fiber tubes (PPT-CFFTs). A fifth monolithic column was also tested as a reference specimen. The columns were tested under increasing lateral loading cycles in a displacement control. The columns had circular cross section diameters of 203 mm and heights of 1,524 mm each. The parameters investigated included different construction details and energy dissipation systems. The PPT-CFFT columns developed lateral strength and deformation capacity comparable to those of the monolithic reinforced concrete column. However, the PPT-CFFT columns dissipated smaller hysteretic energy compared to that of the monolithic reinforced concrete column. Finally, a simple model was used to predict the backbone curves of segmental columns. The model was conservative and it predicted approximately 75% of the measured ultimate strength and displacement.  相似文献   

4.
This paper presents results of an experimental investigation on three beams and five short columns, consisting of glass fiber reinforced polymer concrete-filled rectangular filament-wound tubes (CFRFTs). The tubes included fibers oriented at ±45° and 90° with respect to the longitudinal axis. Additional longitudinal fibers [0°] were provided in flanges for flexural rigidity. Beams included totally filled tubes and a tube partially filled with concrete, which had a central hole for reducing deadweight. The effect of reinforcement ratio was examined by using tubes of two different sizes. Flexural behavior of CFRFT was compared to concrete-filled rectangular steel tubes (CFRSTs) of similar reinforcement ratios. Short columns were tested under eccentricity ratios (e/h) of 0, 0.09, 0.18, and 0.24, where h is the section depth. Transverse strains were measured around the perimeter of concentrically loaded column to evaluate confinement effect. The study showed that CFRFT is a feasible system that could offer similar flexural strength to CFRST. The tube laminate structure and its progressive failure contribute to the slightly nonlinear behavior of beams. The CFRFT beam with inner hole had an overall strength-to-weight ratio, 77% higher than the totally filled beam, but failed in compression. Bulging of CFRFT columns has limited their confinement effectiveness.  相似文献   

5.
A strengthening technique, combining carbon fiber-reinforced polymer (CFRP) laminates and strips of wet layup CFRP sheet, is used to increase both the flexural and the energy dissipation capacities of reinforced concrete (RC) columns of square cross section of low to moderate concrete strength class, subjected to constant axial compressive load and increasing lateral cyclic loading. The laminates were applied according to the near surface mounted technique to increase the flexural resistance of the columns, while the strips of CFRP sheet were installed according to the externally bonded reinforcement technique to enhance the concrete confinement, particularly in the plastic hinge zone where they also offer resistance to the buckling and debonding of the laminates and longitudinal steel bars. The performance of this strengthening technique is assessed in undamaged RC columns and in columns that were subjected to intense damage. The influence of the concrete strength and percentage of longitudinal steel bars on the strengthening effectiveness is assessed. In the groups of RC columns of 8 MPa concrete compressive strength, this technique provided an increase of about 67% and 46% in terms of column’s load carrying capacity, when applied to undamaged and damaged columns, respectively. In terms of energy dissipation capacity, the increase ranged from 40%–87% in the undamaged columns, while a significant increase of about 39% was only observed in one of the damaged columns. In the column of moderate concrete compressive strength (29 MPa), the technique was even much more effective, since, when compared to the maximum load and energy dissipation capacity of the corresponding strengthened column of 8 MPa of average compressive strength, it provided an increase of 39% and 109%, respectively, showing its appropriateness for RC columns of buildings requiring upgrading against seismic events.  相似文献   

6.
A method to utilize fiber composites for rapid repair of earthquake damaged flared columns was developed. Two 0.4-scale reinforced concrete columns that had been tested to failure in previous research were used. Both columns had been subjected to slow cyclic loads and had failed due to low-cycle fatigue of the longitudinal bars. To repair the columns, the damaged concrete in and around the plastic hinge was removed and the steel bars were straightened. Low-shrinkage, high-strength concrete grout was placed in the column afterward. The broken longitudinal bars were not replaced. Rather, glass and carbon fiber reinforced polymer (FRP) sheets with fibers running in the axial direction of the column were added to provide flexural strength to the columns. Additionally, glass FRP sheets with horizontal fibers were attached on the column to provide confinement and shear strength. Cyclic tests of the repaired columns indicated that the method to restore the strength was effective. Analysis using conventional constitutive relationships led to a close estimate of the lateral load response of the models.  相似文献   

7.
This study concentrates on analytical evaluation of the effect of external confinement using fiber reinforced polymers (FRP) sheets on the response of concrete rectangular columns designed for gravity load only and having spliced longitudinal reinforcement at the column base. A general analytical scheme for evaluating the strength capacity and ductility of the columns under combined flexural–axial loads was developed. The analysis takes into account the bond strength degradation of the spliced reinforcement with increase in lateral load by incorporating a generalized bond stress–slip law, and considers the effect of FRP confinement on the stress–strain response of concrete material. Particular emphasis is placed in the analysis on the slip response of the spliced bars and the consequent fixed end rotation that develops at the column base. Results predicted by the analysis showed very good agreement with limited experimental data. A parametric evaluation was carried out to evaluate the effect of different design and strength parameters on the column response under lateral load. Without confinement, the columns suffered premature bond failure and, consequently, low flexural strength capacity. Confining the concrete in the columns end zone at the splice location with FRP sheets enhanced the bond strength capacity of the spliced reinforcement, increased the steel stress that can be mobilized before bond failure occurs, and consequently improved the flexural strength capacity and ductility of the columns. A general design equation, expressed as a function of the main parameters that influence the bond strength capacity between spliced steel bars and FRP confined concrete, is proposed to calculate the area of FRP sheets needed for strengthening of the subject columns.  相似文献   

8.
The results of a research program that evaluated the confinement effectiveness of the type and the amount of fiber-reinforced polymer (FRP) used to retrofit circular concrete columns are presented. A total of 17 circular concrete columns were tested under combined lateral cyclic displacement excursions and constant axial load. It is demonstrated that a high axial load level has a detrimental effect and that a large aspect ratio has a positive effect on drift capacity. Compared with the performance of columns that are monotonically loaded until failure, three cycles of every displacement excursion significantly affect drift capacity. The energy dissipation capacity is controlled by FRP jacket confinement stiffness, especially under a high axial load level. The fracture strain of FRP material has no significant impact on the drift capacity of retrofitted circular concrete columns as long as the same confining pressure is provided, which differs from the common opinion that a larger FRP fracture strain is advantageous in seismic retrofitting. The amount of confining FRP greatly affects the length of the plastic hinge region and the drift capacity of FRP-retrofitted columns. A further increase in confinement after a critical value causes a reduction in the deformation capacity of the columns.  相似文献   

9.
Steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) are a novel reinforcement for concrete structures. Because of the FRP’s linear elastic characteristic and high ultimate strength, they can achieve a stable postyield stiffness even after the inner steel bar has yielded, which subsequently enables a performance-based seismic design to easily be implemented. In this study, lateral cyclic loading tests of concrete columns reinforced either by SFCBs or by ordinary steel bars were conducted with axial compression ratios of 0.12. The main variable parameters were the FRP type (basalt or carbon FRP) and the steel/FRP ratio of the SFCBs. The test results showed the following: (1)?compared with ordinary RC columns, SFCB-reinforced concrete columns had a stable postyield stiffness after the SFCB’s inner steel bar yielded; (2)?because of the postyield stiffness of the SFCB, the SFCB-reinforced concrete columns exhibited less column-base curvature demand than ordinary RC columns for a given column cap lateral deformation. Thus, reduced unloading residual deformation (i.e., higher postearthquake reparability) of SFCB columns could be achieved; (3)?the outer FRP type of SFCB had a direct influence on the performance of SFCB-reinforced concrete columns, and concrete columns reinforced with steel-basalt FRP (BFRP) composite bars exhibited better ductility (i.e., a longer effective length of postyield stiffness) and a smaller unloading residual deformation under the same unloading displacement when compared with steel-carbon FRP (CFRP) composite bar columns; (4)?the degradation of the unloading stiffness by an ordinary RC column based on the Takeda (TK) model was only suitable at a certain lateral displacement. In evaluating the reparability of important structures at the small plastic deformation stage, the TK model estimated a much smaller residual displacement, which is unsafe for important structures.  相似文献   

10.
A design approach, developed specifically for seismic bond strengthening of the critical splice region of reinforced concrete columns or bridge piers, is presented and discussed. The approach is based on providing adequate concrete confinement within the splice zone for allowing the spliced bars to theoretically develop enough postelastic tension strains demanded by large earthquakes before experiencing splitting bond failure. The accuracy of the approach was validated experimentally by evaluating the seismic behavior of full-scale gravity load-designed (as-built) rectangular columns that were strengthened or repaired in accordance with the proposed approach. Three types of confinement were used and compared, namely, internal steel ties, external fiber polymer reinforced jackets, and a combination of both. The repaired/strengthened columns developed sizable postyield strains of the spliced bars, considerable increases in the lateral load and drift capacities, and much less concrete damage within the splice zone when compared with the as-built columns. As a further support of the adequacy of the design strengthening approach, the backbone lateral load-drift response of the strengthened columns showed a good agreement with the envelope response generated using nonlinear flexural analysis assuming perfect bond between the column reinforcement and concrete.  相似文献   

11.
The temperature difference between the top and bottom of a glass fiber reinforced polymer (GFRP) composite deck, ~ 65°C ( ~ 122°F), is nearly three times that of conventional concrete decks ~ 23°C ( ~ 41°F). Such a large temperature difference is attributed to the relatively lower thermal conductivity of GFRP material. In this study, laboratory tests were conducted on two GFRP bridge deck modules (10.2 and 20.3?cm deep decks) by heating and cooling the top surface of the GFRP deck, while maintaining ambient (room) temperature at the deck bottom. Deflections and strains were recorded on the deck under thermal loads. Theoretical results (using macro approach, Navier-Levy, and FEM) were compared with the laboratory test data. The test data indicated that the GFRP deck exhibited hogging under a positive temperature difference (i.e., Ttop>Tbottom, heating test; Ttop and Tbottom are temperatures at top and bottom of the deck, respectively) and sagging under a negative temperature difference (i.e., Ttop相似文献   

12.
Knowing the ability of reinforced concrete (RC) bridges to withstand future seismic demands during their life-cycle can help bridge owners make rational decisions regarding optimal allocation of resources for maintenance, repair, and/or rehabilitation of bridge systems. The accuracy of a reliability assessment can be improved by incorporating information about the current aging and deterioration conditions of a bridge. Nondestructive testing (NDT) can be used to evaluate the actual conditions of a bridge, avoiding the use of deterioration models that bring additional uncertainties in the reliability assessment. This paper develops probabilistic deformation and shear capacity models for RC bridge columns that incorporate information obtained from NDT. The proposed models can be used when the flexural stiffness decays nonuniformly over a column height. The flexural stiffness of a column is estimated based on measured acceleration responses using a system identification method and the damage index method. As an application of the proposed models, a case study assesses the fragility (the conditional probability of attaining or exceeding a specified capacity level) of the column in the Lavic Road Overcrossing for a given deformation or shear demand. This two-span concrete box-girder bridge located in Southern California was subject to the Hector Mine Earthquake in 1999. Pre- and postearthquake estimates of the univariate shear and deformation fragilities and of the bivariate shear-deformation fragility are computed and compared. Both displacement and shear capacities are found to decrease after the earthquake event. Additionally, the results show that the damage due to the Hector Mine Earthquake has a larger impact on the shear capacity than the deformation capacity, leading to a more significant increment in the shear fragility than in the deformation fragility.  相似文献   

13.
Retrofitting of Rectangular Columns with Deficient Lap Splices   总被引:2,自引:0,他引:2  
The cyclic behavior of eight 0.4-scale reinforced concrete column specimens is investigated. The columns incorporated deficient design details to simulate bridge columns built in Washington State prior to 1971. Two columns were tested as reference specimens, five were tested after retrofitting using carbon fiber-reinforced polymer (CFRP), and one was tested after retrofitting using a conventional steel jacket. All the specimens were tested under constant gravity load and incrementally increasing lateral loading cycles. The specimens had rectangular cross sections with aspect ratios of 1.5 and 2.0. The parameters investigated included the amount of CFRP reinforcement, different retrofitting jacket configurations, and different retrofitting materials. For the as-built specimens, two modes of failure occurred, namely low cyclic fatigue of longitudinal reinforcement and lap splice failure. For the retrofitted specimens, no lap splice failure was observed. All the retrofitted specimens failed due to low cyclic fatigue failure of the longitudinal bars. The retrofitting measures improved the displacement ductility, energy dissipation, and equivalent viscous damping. In addition, increasing the amount of CFRP reinforcement improved the performance of the test specimens.  相似文献   

14.
The effectiveness of a new structural material, namely, textile-reinforced mortar (TRM), was investigated experimentally in this study as a means of confining oldtype reinforced concrete (RC) columns with limited capacity due to bar buckling or due to bond failure at lap splice regions. Comparisons with equal stiffness and strength fiber-reinforced polymer (FRP) jackets allow for the evaluation of the effectiveness of TRM versus FRP. Tests were carried out on nearly full scale nonseismically detailed RC columns subjected to cyclic uniaxial flexure under constant axial load. Ten cantilevertype specimens with either continuous or lap-spliced deformed longitudinal reinforcement at the floor level were constructed and tested. Experimental results indicated that TRM jacketing is quite effective as a means of increasing the cyclic deformation capacity of oldtype RC columns with poor detailing, by delaying bar buckling and by preventing splitting bond failures in columns with lap-spliced bars. Compared with their FRP counterparts, the TRM jackets used in this study were found to be equally effective in terms of increasing both the strength and deformation capacity of the retrofitted columns. From the response of specimens tested in this study, it can be concluded that TRM jacketing is an extremely promising solution for the confinement of reinforced concrete columns, including poorly detailed ones with or without lap splices in seismic regions.  相似文献   

15.
In this study, two column and pile-footing models consisting of concrete-filled steel tube (CFT) columns, reinforced concrete footings, and steel H-piles were designed and constructed at approximately one-fifth scale. The experimental differences between the two models were in the design details of the CFT column-to-footing connections. One connection consisted of welded studs, and the other used a base plate and stiffeners. The two models were tested in a vertical cantilever condition with cyclic horizontal forces and a constant axial load applied to the top of the column. The model footings were supported on 16 model steel H-piles simulating the pile foundation. Under imposed horizontal displacement, the two models with different CFT-to-pile-cap connection details demonstrated satisfactory cyclic behavior, with the development of full plastic hinges at the bottom of the columns. Strut-and-tie modeling analysis was carried out to show the force-resisting mechanism in the reinforced concrete footing. The study also validated a new design detail for the anchorage of steel H-piles to pile caps.  相似文献   

16.
A set of column-footing subassemblies were prepared to investigate construction feasibility and seismic performance of structural joints for concrete-filled fiber reinforced polymer (FRP) tubes (CFFT) as bridge substructure. Based on the common practices of the precast industry and previous research on CFFT, the test matrix included a control reinforced concrete (RC) column and three CFFT columns, all with similar RC footings. The three CFFT columns included a cast-in-place CFFT column with starter bars, a precast CFFT column with grouted starter bars, and a precast CFFT column with unbonded posttensioned rods. The columns were subjected to a constant axial load and a pseudostatic lateral load. All proposed joints proved feasible in construction and robust under extreme load conditions. FRP tube, when secured properly in the footing, showed great influence on the seismic performance of the column by providing both longitudinal reinforcement and hoop confinement to the core concrete. The CFFT columns exhibited significant improvement over traditional RC columns in both ultimate strength and ductility. The study also showed that practices of the precast concrete industry can be easily and effectively implemented for the CFFT column construction.  相似文献   

17.
This study investigated the effectiveness of carbon fiber-reinforced polymer (CFRP) sheets in protecting reinforced concrete (RC) columns from corrosion of steel reinforcement. Thirty small-scale RC columns and four midscale RC columns were used in this study. The small-scale columns were used for a comprehensive parametric study, whereas the midscale columns were used to evaluate design guidelines proposed based on the results of the small-scale column tests. The test columns were conditioned under an accelerated corrosion process and then tested under uniaxial compression up to failure. The test results showed that although CFRP sheet wrapping decreased the corrosion rate, the corrosion of steel reinforcement could continue to occur, eventually showing a decrease in ultimate axial compression capacity. Design guidelines were proposed based on the small-scale RC column tests and evaluated through a comparison with the test results of midscale RC columns. The proposed design guidelines introduced a concept of effective area to account for the corrosion damage, such as internal cracking and cross-sectional loss of steel reinforcement.  相似文献   

18.
In this study, a nonlinear model is developed to study the response of blast-loaded reinforced concrete (RC) columns. The strain rate dependency and the axial load and P?Δ effects on the flexural rigidity variation along the column heights were implemented in the model. Strain rate and axial load effects on a typical RC column cross section were investigated by developing strain-rate-dependent moment-curvature relationships and force-moment interaction diagrams. Analysis results showed that the column cross section strength and deformation capacity are highly dependent on the level of strain rates. Pressure-impulse diagrams were developed for two different column heights with two different end connection details (ductile and nonductile) and the effects of the axial load on the column midheight deflection and end rotation at failure were evaluated for both connection types. Based on the results of this study, a pressure-impulse band (PIB) technique is proposed. The PIB technique presents a useful tool that covers practical uncertainties associated with RC column reinforcement details as well as possible increase of column axial loads resulting from different blast-induced progressive collapse scenarios. Finally, the uses of the PIB technique for vulnerability screening of critical infrastructure or postblast capacity assessment of RC columns of target structures are presented.  相似文献   

19.
The effectiveness of fiber-reinforced polymer (FRP) and textile-reinforced mortar (TRM) jackets was investigated experimentally and analytically in this study to confine old-type reinforced concrete (RC) columns with limited capacity because of bond failure at lap-splice regions. The local bond strength between lap-spliced bars and concrete was measured experimentally along the lap-splice region of six full-scale RC columns subjected to cyclic uniaxial flexure under constant axial load. The bond strength of the two column specimens tested without retrofitting was found to be in good agreement with the predictions given by two existing bond models. These models were modified to account for the contribution of composite material jacketing to the bond resistance between lap-spliced bars and concrete. The effectiveness of FRP and TRM jackets against splitting at lap splices was quantified as a function of jacket properties and geometry as well as in terms of the jacket effective strain, which was found to depend on the ratio of lap-splice length to bar diameter. Consequently, simple equations for calculating the bond strength of lap splices in members confined with composite materials (FRP or TRM) are proposed.  相似文献   

20.
This paper presents an inclusive testing program conducted on scaled models of reinforced concrete (RC) bridge columns with insufficient lap-splice length. Thirteen half-scale circular and square column samples were tested in flexure under lateral cyclic loading. Three columns were tested in the as-built configuration whereas ten samples were tested after being retrofitted with different composite-jacket systems. A brittle failure was observed in the as-built samples due to bond deterioration of the lap-spliced longitudinal reinforcement. The jacketed circular columns demonstrated a significant improvement in their cyclic performance. Yet, tests conducted on square jacketed columns showed a limited improvement in clamping on the lap-splice region and for enhancing the ductility of the column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号