首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of the lymphocyte stimulatory action of sulfhydryl group-reactive mercuric ions was studied with respect to its potential ability to induce a protein tyrosine phosphorylation-linked signal for mobilization of free Ca2+ into cytoplasm and nucleus of the cell. Exposure of human leukamic T cell line (Jurkat) cells to high (1 mM) and low (0.01 mM) concentrations of HgCl2 induced tyrosine phosphorylation of multiple proteins in a concentration-dependent manner. Confocal microscopy directly visualized the time course localization of Ca2+ inside the cells after exposure to HgCl2. The onset and level of Ca2+ mobilization following HgCl2 exposure were in parallel to those of protein tyrosine phosphorylation. Interestingly, by either concentration of HgCl2, Ca2+ was mobilized in both cytoplasm and nucleus almost simultaneously, and the level of Ca2+ mobilization in the nucleus was more than that in the cytoplasm. All the HgCl2-mediated Ca2+ mobilization was prevented by addition of protein kinase inhibitor staurosporin prior to HgCl2. These results suggest that heavy metal stress triggers a protein tyrosine phosphorylation-linked signal that leads to a nuclear event-dominant Ca2+ mobilization.  相似文献   

2.
The ability of ionic mercury to induce protein tyrosine phosphorylation in mouse spleen cells and in the mouse WEHI-231 B-cell lymphoma was investigated. We have confirmed previous studies which showed that exposure to high levels (several hundred microM) of mercury lead to very large increases in the level of protein tyrosine phosphorylation in these cell systems. However we have also demonstrated that low levels (in the order of 0.1 to 1.0 microM) of mercury also significantly upregulate protein tyrosine phosphorylation. Mercury induced protein tyrosine phosphorylation is inhibited by the mercury chelator penicillamine and by pretreating treating target cells with the sulfhydryl blocking reagent N-hydroxymaleimide. These results suggest that exposure to low levels of mercury could potentially interfere with lymphocyte signal transduction and so offer a possible explanation as to how mercury exposure could lead to immune cellular dysfunction. On a molecular level, the results suggest that the site(s) of action with respect to mercury dependent induction of protein tyrosine phosphorylation is likely a free disulfide group or groups located on the outer leaflet of the plasma membrane.  相似文献   

3.
We have examined the role of tyrosine phosphorylation in regulation of calcium-dependent chloride secretion across T84 colonic epithelial cells. The calcium-mediated agonist carbachol (CCh, 100 microM) stimulated a time-dependent increase in tyrosine phosphorylation of a range of proteins (with molecular masses ranging up to 180 kDa) in T84 cells. The tyrosine kinase inhibitor, genistein (5 microM), significantly potentiated chloride secretory responses to CCh, indicating a role for CCh-stimulated tyrosine phosphorylation in negative regulation of CCh-stimulated secretory responses. Further studies revealed that CCh stimulated an increase in both phosphorylation and activity of the extracellular signal-regulated kinase (ERK) isoforms of mitogen-activated protein kinase. Chloride secretory responses to CCh were also potentiated by the mitogen-activated protein kinase inhibitor, PD98059 (20 microM). Phosphorylation of ERK in response to CCh was mimicked by the protein kinase C (PKC) activator, phorbol myristate acetate (100 nM), but was not altered by the PKC inhibitor GF 109203X (1 microM). ERK phosphorylation was also induced by epidermal growth factor (EGF) (100 ng/ml). Immunoprecipitation/Western blot studies revealed that CCh stimulated tyrosine phosphorylation of the EGF receptor (EGFr) and increased co-immunoprecipitation of the adapter proteins, Shc and Grb2, with the EGFr. An inhibitor of EGFr phosphorylation, tyrphostin AG1478 (1 microM), reversed CCh-stimulated phosphorylation of both EGFr and ERK. Tyrphostin AG1478 also potentiated chloride secretory responses to CCh. We conclude that CCh activates ERK in T84 cells via a mechanism involving transactivation of the EGFr, and that this pathway constitutes an inhibitory signaling pathway by which chloride secretory responses to CCh may be negatively regulated.  相似文献   

4.
1. The effect of increasing cellular tyrosine phosphorylation by inhibiting endogenous tyrosine phosphatases was examined on voltage-operated calcium channel currents in vascular smooth muscle cells. 2. In single ear artery smooth muscle cells of the rabbit, studied by the whole cell voltage clamp technique, intracellular application of the tyrosine phosphatase inhibitors, sodium orthovanadate (100 microM) and peroxyvanadate (100 microM orthovanadate + 1 mM H2O2) increased voltage-operated calcium channel currents by 56% and 83%, respectively. 3. Bath application of two other membrane permeant tyrosine phosphatase inhibitors, phenylarsine oxide (100 microM) and dephostatin (50 microM) also increased voltage-operated calcium channel currents by 48% and 52%, respectively. 4. The selective tyrosine kinase inhibitor, tyrphostin-23 (100 microM) reduced calcium channel currents by 41%. Pre-incubation with tyrphostin-23 abolished the effects of peroxyvanadate, phenylarsine oxide and dephostatin on calcium channels. 5. Western blot analysis of rabbit ear artery cell lysates showed increased tyrosine phosphorylation of several endogenous proteins following treatment with peroxyvanadate. 6. These results indicate that a number of structurally dissimilar inhibitors of tyrosine phosphatases increase voltage-operated calcium channel currents in arterial smooth muscle cells presumably due to increased tyrosine phosphorylation.  相似文献   

5.
The effects of mercuric chloride (HgCl2) and methyl mercury (MeHg) were examined on basal mechanical activity and electrically-induced neurogenic cholinergic contractions (twitch contractions) in longitudinal muscle-myenteric plexus strips from guinea-pig distal ileum. Both compounds at 0.33 microM slightly enhanced the amplitude of twitch contractions in approximately 50% preparations. This effect was probably due to facilitation of acetylcholine (ACh) release since 0.1 and 1 microM mercurials increased electrically-evoked tritium outflow from [3H]choline preloaded muscle layer with attached myenteric plexus. Conversely, higher mercury concentrations inhibited twitch contractions (HgCl2 IC50 = 21.3 +/- 6.4 microM; MeHg IC50 = 45.1 +/- 5.5 microM), as well as contractions to exogenous ACh (0.1 microM) in resting preparations, and concomitantly increased the basal tone. The former effects possibly reflected an antimuscarinic activity of mercury, while the latter was related to alterations of calcium homeostasis in the effector cells. Indeed, the effect of HgCl2 on basal tone was antagonized by the Ca2+ entry blocker nifedipine (3, 10, 30 nM), indicating Hg-induced facilitation of Ca2+ influx through voltage-dependent channels. On the whole, our results suggest that cholinergic neuromuscular transmission and Ca(2+)-dependent mechanisms underlying smooth muscle contractility are targets for mercury toxicity in the intestine.  相似文献   

6.
Female SJL/N, A.SW, B10.S (H-2s), BALB/C, DBA/2 (H-2d), A.TL and B10. TL (H-2t1) mice were treated with sc injections of 1.0 mg CH3HgCl/kg body weight every third day for 4 weeks. Controls were given sterile, isotonic NaCl. CH3HgCl (MeHg) induced in SJL, A.SW and B10.S mice antinucleolar antibodies (ANoA) targeting the nucleolar 34-kDa protein fibrillarin. The susceptibility to develop ANoA in response to MeHg was linked to the mouse major histocompatibility complex (H-2), since H-2s but not H-2t1 mice sharing background (non-H-2) genes developed ANoA. However, the background genes decided the strength of the ANoA response in the susceptible H-2s mice, and the ANoA titer was in the order: A.SW > SJL > B10.S. Although MeHg as well as inorganic mercury induced ANoA, the two forms of mercury differed both quantitatively and qualitatively in their effect on the immune system. MeHg induced in H-2s mice a weaker general (polyclonal) and specific (ANoA) B-cell response than HgCl2, probably due to weaker activation of Th2 cells with lower IL-4 production, as indicated by the minimal increase in serum IgE. The A. TL strain with a susceptible genetic background, but a H-2 haplotype resistant to HgCl2, responded to MeHg with a modest polyclonal B-cell response dominated by Th1-associated Ig isotypes. H-2s mice treated with MeHg showed in contrast to HgCl2-treated mice no systemic immune-complex (IC) deposits, which may be due to the weaker immune activation after MeHg treatment. The increase in serum IgE concentration and ANoA titer 2-6 weeks after stopping treatment with MeHg is identical to reactions during the first 2-3 weeks of HgCl2 treatment. Therefore, demethylation of MeHg probably increased the concentration of inorganic mercury in the body sufficiently to reactivate the immune system. This reactivation indicated that genetically susceptible mice are not resistant to challenge with mercury, making them distinctly different from rats.  相似文献   

7.
1. We have studied the effect of endothelin-1 stimulation on protein tyrosine phosphorylation levels in intact small mesenteric arteries of the rat and investigated the effects of tyrosine kinase inhibition on the contractile response to this agonist. 2. Endothelin-1 stimulated a rapid (20 s), sustained (up to 20 min) and concentration-dependent (1-100 nM) increase in protein tyrosine phosphorylation levels which coincided temporally with the contractile response in intact and alpha-toxin permeabilized small artery preparations. Tyrosine phosphorylation was increased in four main clusters of proteins of apparent molecular mass 28-33, 56-61, 75-85 and 105-115 kDa. Endothelin-1-induced protein tyrosine phosphorylation was independent of extracellular calcium, antagonized by the tyrosine kinase inhibitor tyrphostin A23 but not by the inactive tyrphostin A1. 3. In intact small arteries tyrphostin A23 inhibited the force developed to endothelin-1 at all concentrations studied; at higher concentrations (10 and 100 nM) the profile of contraction was altered from a sustained to a transient response. Tyrphostin A1 inhibited the contractile response to endothelin-1 at all concentrations except 100 nM; the profile of the response was not altered. Neither tyrphostin affected the transient phasic contraction induced by endothelin-1 (100 nM) in the absence of extracellular calcium. 4. In rat alpha-toxin permeabilized mesenteric arteries endothelin-1 caused a concentration-dependent increase in force in the presence of 10 microM GTP and low (pCa 6.7) constant calcium, demonstrating increased sensitivity of the contractile apparatus to calcium. Tyrphostin A23 inhibited this response by approximately 50%, tyrphostin A1 did not affect endothelin-1-induced calcium sensitization of force. 5. We conclude that increased tyrosine phosphorylation is important in the contractile response induced by endothelin-1 in intact small mesenteric arteries. Furthermore our data implicate activation of this signalling pathway in the tonic phase of contraction possibly through modulation of the sensitivity of the contractile apparatus to calcium.  相似文献   

8.
Inorganic mercury has a high affinity for the kidneys and causes acute renal failure. The present investigation was designed to determine the cause of the strain difference in sensitivity of mice to the renal toxicity of inorganic mercury. Renal damage caused by HgCl2 was estimated by histopathological and biochemical assessment, such as increase in blood urea nitrogen and plasma creatinine levels, and was found to be more remarkable in C3H/He than in C57BL/6 mice. Increase in renal lipid peroxidation in C3H/He was greater than that in C57BL/6 mice. However, no strain difference was observed in renal activities of glutathione (GSH) peroxidase, superoxide dismutase and GSH S-transferase in HgCl2-untreated mice. The GSH content and activities of catalase and GSSG reductase in kidney of HgCl2-untreated mice were higher in C3H/He than in C57BL/6. Background level of renal metallothionein content and the extent of metallothionein induction by HgCl2 showed no strain difference. On the other hand, renal mercury accumulation was higher and urinary mercury excretion was lower in C3H/He than in C57BL/6. The activity of renal gamma-glutamyltranspeptidase (gamma-GTP), which plays a key role in renal mercury accumulation, was higher in C3H/He than in C57BL/6. Furthermore, the increase in blood urea nitrogen by HgCl2, renal mercury accumulation and renal gamma-GTP activity in B6C3F1 mice were intermediate between those of the parent strains. These results suggest that the strain difference in renal toxicity of inorganic mercury seems to be caused by the discrepancy in renal mercury accumulation, and therefore, renal gamma-GTP may be an important factor determining the susceptibility of mice to the toxic action of inorganic mercury.  相似文献   

9.
Aggregation of the FcepsilonRI, a member of the immune receptor family, induces the activation of proteintyrosine kinases and results in tyrosine phosphorylation of proteins that are involved in downstream signaling pathways. Here we report that Pyk2, another member of the focal adhesion kinase family, was present in the RBL-2H3 mast cell line and was rapidly tyrosine-phosphorylated and activated after FcepsilonRI aggregation. Tyrosine phosphorylation of Pyk2 was also induced by the calcium ionophore A23187, by phorbol myristate acetate, or by stimulation of G-protein-coupled receptors. Adherence of cells to fibronectin dramatically enhanced the induced tyrosine phosphorylation of Pyk2. Although Src family kinases are activated by FcepsilonRI stimulation and tyrosine-phosphorylate the receptor subunits, the activation and tyrosine phosphorylation of Pyk2 were downstream of Syk. In contrast, tyrosine phosphorylation of Pyk2 by stimulation of G-protein-coupled receptors was independent of Syk. Therefore, the FcepsilonRI-induced tyrosine phosphorylation of Pyk2 is downstream of Syk and may play a role in cell secretion.  相似文献   

10.
The GT1-1 GnRH neuronal cell lines exhibit highly differentiated properties of GnRH neurons. We have used GT1-1 cells to study the roles of norepinephrine (NE), membrane depolarization, calcium influx, and phorbol esters in the regulation of mitogen-activated protein (MAP) kinase. NE, which is known to stimulate the release of GnRH, induced MAP kinase activity, the tyrosine phosphorylation of MAP kinase, and MAP kinase kinase activity. Forskolin led to activation of MAP kinase comparable with that induced by NE, and a selective inhibitor of cAMP-dependent protein kinase, H8, attenuated the NE-induced activation of MAP kinase. On the other hand, elimination of extracellular calcium by EGTA completely blocked NE-induced tyrosine phosphorylation of MAP kinase, and a selective inhibitor of calcium/calmodulin-dependent protein kinase, KN-62, attenuated the NE-induced activation of MAP kinase. Furthermore, depolarization of GT1-1 cells with 75 mM KCl, 10 microM BayK 8644, or 1 microM calcium ionophore (A23187) induced rapid tyrosine phosphorylation of MAP kinase. The omission of calcium from the extracellular medium completely abolished these effects of tyrosine phosphorylation of MAP kinase. Phorbol 12-myristate 13-acetate (PMA) also induced MAP kinase activity, but pretreatment of the cultured cells with PMA to down-regulate protein kinase C did not abolish the activation of MAP kinase by NE. In addition, although phosphorylation of Raf-1 kinase was stimulated by PMA, this phosphorylation was not induced by either NE or A23187. These results demonstrate that NE activates MAP kinase directly in GT1-1 cells, and that the effect of NE is mediated by increase in the cAMP level and by calcium influx, but not by PMA-sensitive protein kinase C or Raf-1 kinase.  相似文献   

11.
Treatment of PC12h cells with a high concentration of KC1 induces depolarization of the plasma membrane and Ca2+ influx into the cells. We have previously shown that KC1 induced tyrosine phosphorylation of cellular proteins of 120, 110, 68, 44 and 42 kDa. In the present study, we found that the 68-kDa protein is paxillin, a tyrosine kinase substrate associated with the actin cytoskeleton. A calcium ionophore, A23187, also induced tyrosine phosphorylation of the 68-kDa protein, while KC1 did not in the presence of EGTA or nifedipine, indicating that the effect of KC1 was due to the Ca2+ influx into the cells. Tyrosine phosphorylation of paxillin was also induced by nerve growth factor and epidermal growth factor, but its migration patterns on an SDS/polyacrylamide gel were different, that is, nerve growth factor and epidermal growth factor caused upward shifts of the bands, while KC1 did not. However, both forms could associate with Csk and Crk. The effect of KC1 was blocked by cytochalasin D, indicating that tyrosine phosphorylation required the integrity of actin filaments. These results suggest that tyrosine phosphorylation of paxillin may be involved in Ca2+ -dependent events in neuronal and neuroendocrine cells.  相似文献   

12.
Depolarization induced by KCl was found to induce tyrosine phosphorylation of cellular proteins in PC12h cells. By Western blotting with anti-phosphotyrosine antibody, we detected tyrosine phosphorylation of proteins with molecular weights of 120, 110, 105, 95, 75, 70, 66, 44, and 42 kDa in response to KCl. The immunoprecipitates from KCl-treated cells with the antibody contained large amounts of tyrosine-phosphorylated proteins and increased activity of tyrosine kinase. Incubation of the immunoprecipitates with [gamma-32P]ATP resulted in tyrosine phosphorylation of two proteins with the molecular weights of 120 and 140 kDa. These effects were completely abolished by the addition of EGTA before KCl treatment, suggesting that the depolarization-induced tyrosine phosphorylation may require calcium entry into the cells from the medium. Increased activity of tyrosine kinase phosphorylating the 120 and 140 kDa proteins was also recovered from cells stimulated with nerve growth factor, basic fibroblast growth factor, epidermal growth factor, and vasoactive intestinal peptide. Among them, depolarization by KCl elicited the strongest effect. These results indicate that a protein tyrosine kinase that phosphorylate the 120 and 140 kDa proteins is phosphorylated or activated in response to calcium ion, cAMP, and growth factors acting through tyrosine kinase receptors.  相似文献   

13.
In the present study, we evaluated the renal and hepatic accumulation of mercury, the intrarenal distribution of mercury and the urinary and fecal excretion of mercury in rats injected intravenously with a non-toxic 0.1 mumol/kg-dose of mercury in the form of mercuric chloride (HgCl2) or a complex of mercury-metallothionein (Hg-MT). Between 6 and 72 h after injection, the concentration of mercury in the kidneys of the rats injected with Hg-MT was significantly greater than that in the rats injected with HgCl2. The greatest difference in the renal concentration of mercury between the two groups of rats was detected 6 h after injection. In the kidneys of both experimental groups of rats, the cortex and the outer stripe of the outer medulla contained the highest concentrations of mercury, with the greatest concentrations found in the renal cortex and outer stripe of the outer medulla of the rats injected with Hg-MT. No differences were found between the two experimental groups with respect to the concentration of mercury in the renal inner stripe of the outer medulla and inner medulla throughout 72 h of study. The content of mercury in the blood and liver decreased over time in both groups of rats, but was always significantly greater in the blood and liver of rats injected with HgCl2. The rats injected with Hg-MT excreted more than eight times the amount of mercury in the urine than the corresponding rats injected with HgCl2 during 72 h. These data indicate that there may be decreased tubular reabsorption of filtered Hg-MT and/or tubular secretion of mercury in the rats injected with Hg-MT. In contrast, the rats injected with HgCl2 excreted significantly more mercury in the feces during the same period of time than the corresponding rats injected with Hg-MT. In conclusion, our data clearly indicate that the renal and hepatic uptake and accumulation of mercury, and the urinary and fecal excretion of mercury, are altered significantly when inorganic mercury is administered intravenously as a complex with metallothionein.  相似文献   

14.
We investigated the effect of bioflavonoid quercetin on tyrosine phosphorylation and phospholipase D (PLD, EC 3.1.4.4) activation in rabbit peritoneal neutrophils stimulated by N-formylmethionyl-leucyl-phenylalanine (fMLP). The quercetin dose-dependently inhibited degranulation and superoxide production in fMLP-stimulated neutrophils. A strong inhibitory effect of quercetin on the tyrosine phosphorylation of several proteins (40, 42, 43, 45, 46 and 75 kDa) was observed when the neutrophils were pretreated with different concentrations of quercetin. Furthermore, quercetin inhibited mitogen activated protein kinase (MAP kinase) and PLD activation induced by fMLP in a dose-dependent manner. The reduction in PLD activity was 30% at 0.1 microM and 70% at 100 microM of quercetin. These results suggest that impairment of neutrophil functions by quercetin may be due, at least in part, to inhibition of tyrosine phosphorylation and PLD activation.  相似文献   

15.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a member of the immunoglobulin superfamily that plays a role in a number of endothelial cell (EC) functions including migration, angiogenesis, and transmigration of leukocytes across endothelium. We postulated that one way PECAM-1 might exert its effects was by regulating intracellular EC levels of calcium. Using single-cell fluorometry, we found that engagement of PECAM-1 by mAbs induced a slow but sustained increase in intracellular calcium, both in EC and in an adherent PECAM-1-transfected cell line that models endothelium. Generation of this signal was specific for certain anti-PECAM-1 antibodies, required the presence of the cytoplasmic domain, depended on extracellular calcium and on tyrosine phosphorylation, but did not require cross-linking; in fact, calcium increases were stimulated by certain Fab fragments. Activation of EC by PECAM-1 also caused a time-dependent increase in prostacyclin release. Given the importance of intracellular calcium and prostacyclin release as signaling molecules, engagement of PECAM-1 during cell-cell interactions may alter a number of EC functions including secretion of vasoactive mediators.  相似文献   

16.
Epidermal growth factor (EGF) is a potent mitogen in many cell types including pancreatic cells. Recent studies show that the effects of some growth factors on growth and cell migration are mediated by tyrosine phosphorylation of the cytosolic tyrosine kinase p125 focal adhesion kinase (p125FAK) and the cytoskeletal protein, paxillin. The aim of the present study was to determine whether EGF activates this pathway in rat pancreatic acini and causes tyrosine phosphorylation of each of these proteins, and to examine the intracellular pathways involved. Treatment of pancreatic acini with EGF induced a rapid, concentration-dependent increase in p125FAK and paxillin tyrosine phosphorylation. Depletion of the intracellular calcium pool or inhibition of PKC activation had no effect on the response to EGF. However, inhibition of the phosphatidylinositol 3-kinase (PI3-kinase) or inactivation of p21rho inhibited EGF-stimulated phosphorylation of p125FAK and paxillin by more than 70%. Finally, cytochalasin D, a selective disrupter of the actin filament network, completely inhibited EGF-stimulated tyrosine phosphorylation of both proteins. All these treatments did not modify EGF receptor autophosphorylation in response to EGF. These results identify p125FAK and paxillin as components of the intracellular pathways stimulated after EGF receptor occupation in rat pancreatic acini. Activation of this cascade requires activation of PI3-kinase and participation of p21rho, but not PKC activation and calcium mobilization.  相似文献   

17.
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.  相似文献   

18.
Tyrosine phosphorylation of multiple platelet proteins is stimulated by thrombin and other agonists that cause platelet aggregation and secretion. The phosphorylation of a subset of these proteins, including a protein tyrosine kinase, pp125FAK, is dependent on the platelet aggregation that follows fibrinogen binding to integrin alpha IIb beta 3. In this report, we examined whether fibrinogen binding, per se, triggers a process of tyrosine phosphorylation in the absence of exogenous agonists. Binding of soluble fibrinogen was induced with Fab fragments of an anti-beta 3 antibody (anti-LIBS6) that directly exposes the fibrinogen binding site in alpha IIb beta3. Proteins of 50-68 KD and 140 kD became phosphorylated on tyrosine residues in a fibrinogen-dependent manner. This response did not require prostaglandin synthesis, an increase in cytosolic free calcium, platelet aggregation or granule secretion, nor was it associated with tyrosine phosphorylation of pp125FAK. Tyrosine phosphorylation of the 50-68-kD and 140-kD proteins was also observed when (a) fibrinogen binding was stimulated by agonists such as epinephrine, ADP, or thrombin instead of by anti-LIBS6; (b) fragment X, a dimeric plasmin-derived fragment of fibrinogen was used instead of fibrinogen; or (c) alpha IIb beta 3 complexes were cross-linked by antibodies, even in the absence of fibrinogen. In contrast, no tyrosine phosphorylation was observed when the ligand consisted of monomeric cell recognition peptides derived from fibrinogen (RGDS or gamma 400-411). Fibrinogen-dependent tyrosine phosphorylation was inhibited by cytochalasin D. These studies demonstrate that fibrinogen binding to alpha IIb beta 3 initiates a process of tyrosine phosphorylation that precedes platelet aggregation and the phosphorylation of pp125FAK. This reaction may depend on the oligomerization of integrin receptors and on the state of actin polymerization, organizational processes that may juxtapose tyrosine kinases with their substrates.  相似文献   

19.
beta2-Integrin adhesion molecules play crucial roles in monocyte transmigration and adherence to the inflamed extracellular matrix. While integrin engagement contributes to inflammatory cell activation, little is known about the precise signaling pathways that are important to integrin-dependent monocyte activation. We examined the role of tyrosine phosphorylation and extracellular-signal regulated kinase (ERK) activity in beta2-integrin signaling in monocytes. Cross-linking of the LFA-1 (CD11a/CD18) and MAC-1 (CD11b/CD18) integrins on the surface of THP-1 monocytic cells induced the accumulation of tyrosine phosphoproteins. As part of this signal both ERK-1 and ERK-2 are tyrosine phosphorylated. In vitro kinase assays documented an increase in ERK-2 activity following both LFA-1 and MAC-1 cross-linking. beta2-Integrin cross-linking also led to a marked increase in 4-h procoagulant activity (PCA) in THP-1 cells and purified human monocytes. Inhibition of tyrosine phosphorylation by genistein (10 microg/ml), or selective ERK inhibition with PD98059 (10 microM), was able to block the integrin-dependent induction of PCA in both THP-1 cells and human monocytes. Thus, beta2 integrin signaling in monocytic cells can flow through the tyrosine phosphorylation and activation of the ERK mitogen activated protein kinases, which is essential for the subsequent expression of tissue factor. These results suggest that the ERK proteins likely function to integrate various adhesion-dependent signals during the process of monocyte transmigration.  相似文献   

20.
Repeated exposure of Brown Norway (BN) rats to relatively low doses of HgCl2 induces autoantibodies to renal antigens (e.g., laminin) and a membranous glomerulonephropathy characterized by proteinuria. In contrast, Lewis (LEW) rats are "resistant" to the autoimmune effects of mercury and, when exposed to this metal, are protected against experimental autoimmune encephalomyelitis (EAE) and Heymann's nephritis. To date, there is no information on "suppressive" effects of mercury in naturally occurring (so-called "spontaneous") rat models of autoimmune disease. Therefore, we have administered HgCl2 to diabetes-prone (DP) BB rats, animals that spontaneously develop both insulin-dependent diabetes mellitus (IDDM) and thyroiditis. We found that DP rats treated with mercury or water for a period of 40-125 days developed autoantibodies to thyroglobulin, with a higher incidence in HgCl2-injected animals (92% vs. 56% in H2O-injected controls). A novel finding of our study was the detection of autoantibodies to laminin in the same rats, again with an increased incidence after HgCl2 treatment (83% vs. 44%). IgG2a was the most frequently detected isotype of antibodies to laminin, followed by IgG1, IgG2b and IgG2c. The IgG isotype profile suggests that treatment with HgCl2 may activate both Th1 and Th2 lymphocytes in BB rats. In spite of these stimulatory effects on autoantibody responses, we found that there was no difference in the incidence of IDDM and thyroiditis between HgCl2-treated and control animals. We conclude that the suppressive effects of mercury previously observed in EAE and Heymann's nephritis of LEW rats do not occur in "spontaneous" autoimmune IDDM and thyroiditis of BB rats. Therefore, immune suppression caused by HgCl2 cannot be considered a common phenomenon, but may be a genetically determined characteristic of LEW rats, possibly related to a specific or unique cytokine profile of this particular rat strain. In contrast, while mercury does not seem to recruit, induce or rescue regulatory T cell function in DP rats, it does stimulate autoantibody responses in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号