首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study describes some unexpected receptor mediated effects of N-methylcarbamylcholine on mouse M1 muscarinic receptor gene transfected cell line (M1Y1) that were not evident from biochemical studies with mouse and rat brain tissue where N-methylcarbamylcholine exhibited only nicotinic properties. Although N-methylcarbamycholine was devoid of muscarinic properties in mouse and rat brain preparations, as determined by phosphoinositide turnover and inhibition of [3H]QNB binding, it exhibited significant muscarinic characteristics in the transfected M1Y1 cell line. At a concentration of 10(-6) M or greater, N-methylcarbamycholine caused a transient increase in intracellular Ca2+ of 50 s duration that was reversible by atropine or pirezepine. The Ca(2+)-transient was not elicited by other nicotinic agents such as nicotine and N,N-dimethylcarbamylcholine, a close analogue of N-methylcarbamylcholine, with comparable affinity for nicotinic receptors and devoid of muscarinic activity. N-Methylcarbamylcholine also stimulated phosphoinositide turnover in M1Y1 cells with an estimated EC50 value 10 times greater than that of carbachol, and the effect was blocked by atropine. Both carbachol and N-methylcarbamycholine inhibited [3H]QNB binding in a concentration-dependent manner; however, the IC50 for carbachol was over two orders of magnitude greater than that observed in mouse and rat brain membranes. In considering possible explanations for the differential characteristics of N-methylcarbamylcholine in mouse and rat brain as compared to the transfected M1Y1 cells, it was concluded that the difference may be attributable to differences in the receptor-transduction coupling efficiency and the microenvironment of the muscarinic receptors.  相似文献   

2.
1. The effects of muscarinic antagonists on cationic current evoked by activating muscarinic receptors with the stable agonist carbachol were studied by use of patch-clamp recording techniques in guinea-pig single ileal smooth muscle cells. 2. Ascending concentrations of carbachol (3-300 microM) activated the cationic conductance in a concentration-dependent manner with conductance at a maximally effective carbachol concentration (Gmax) of 27.4+/-1.4 nS and a mean -log EC50 of 5.12+/-0.03 (mean+/-s.e.mean) (n=114). 3. Muscarinic antagonists with higher affinity for the M2 receptor, methoctramine, himbacine and tripitramine, produced a parallel shift of the carbachol concentration-effect curve to the right in a concentration-dependent manner with pA2 values of 8.1, 8.0 and 9.1, respectively. 4. All M3 selective muscarinic antagonists tested, 4-DAMP, p-F-HHSiD and zamifenacin, reduced the maximal response in a concentration-dependent and non-competitive manner. This effect could be observed even at concentrations which did not produce any increase in the EC50 for carbachol. At higher concentrations M3 antagonists shifted the agonist curve to the right, increasing the EC50, and depressed the maximum conductance response. Atropine, a non-selective antagonist, produced both reduction in Gmax (M3 effect) and significant increase in the EC50 (M2 effect) in the same concentration range. 5. The depression of the conductance by 4-DAMP, zamifenacin and atropine could not be explained by channel block as cationic current evoked by adding GTPgammaS to the pipette (without application of carbachol) was unaffected. 6. The results support the hypothesis that carbachol activates M2 muscarinic receptors so initiating the opening of cationic channels which cause depolarization; this effect is potentiated by an unknown mechanism when carbachol activates M3 receptors. As an increasing fraction of M3 receptors are blocked by an antagonist, the effects on cationic current of an increasing proportion of activated M2 receptors are disabled.  相似文献   

3.
We have characterized in vitro the muscarinic receptors mediating the contraction of the detrusor muscle in Cynomolgus monkeys and guinea pigs using carbachol as the agonist and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, M3-selective), methoctramine (M2-selective) and pirenzepine (M1-selective) as the antagonists. Carbachol induced a concentration-dependent contraction of the detrusor muscle of monkey and guinea pig yielding similar pD2 values of 6.67+/-0.03 (n=50) and 6.77+/-0.06 (n=36), respectively. In the detrusor muscle of Cynomolgus monkey, all antagonists produced a concentration-dependent inhibition of carbachol-induced contractions, without decreasing the maximal response. Schild plot analysis yielded slopes not different from unity for all antagonists. The order of antagonist potency was: 4-DAMP (pA2=8.96)>pirenzepine (pA2=6.66)>methoctramine (pA2=6.03), suggesting that M3 receptors have a dominant role in mediating detrusor contraction. In the detrusor muscle of the guinea pig, 4-DAMP and pirenzepine, but not methoctramine, produced a concentration-dependent inhibition of the carbachol-induced contractions, without decreasing the maximal response. Schild plot analysis yielded a slope not different from unity for 4-DAMP and pirenzepine. 4-DAMP (pA2=9.07) had a higher potency than pirenzepine (pA2=6.66), a finding consistent with previously published data. The present study shows that in Cynomolgus monkey stimulation of the M3 subtype is dominant in mediating detrusor contraction upon carbachol stimulation.  相似文献   

4.
Carbachol, a full muscarinic receptor agonist, stimulated [3H]inositol phosphate accumulation in both the ventral and dorsal hippocampus, but its efficacy and affinity were higher in the former area. The partial agonist oxotremorine had a weak stimulatory effect in both regions. The affinity profiles of pirenzepine and AF-DX 116 in antagonizing carbachol-stimulated [3H]inositol phosphate accumulation indicated that M1 and M3 receptors contributed equally to the response in either region. On the other hand, there were no differences in the receptor density, or in the distribution of muscarinic receptor subtypes between the two regions of the hippocampus which could account for the effect as determined in binding experiments with selective antagonists. Analysis of carbachol binding curves did, instead, indicate a difference in the way the agonist interacted with the receptors within the hippocampus, i.e., carbachol recognized three agonist affinity states (superhigh, high and low) in the ventral hippocampus, and only two (high and low) in the dorsal part. The findings thus suggested that the regional diversity in the efficacy of carbachol in stimulating phosphoinositide turnover was related to the complexity with which it bound to muscarinic receptors. Transduction processes that intervene between changes in the muscarinic receptors' conformation and activation of phospholipase C might be relevant to these differences.  相似文献   

5.
Recently, it was reported that muscarinic-type cholinergic receptors coupled to the phosphoinositide messenger system are present in the rabbit inner medullary collecting duct and Madin-Darby canine kidney (MDCK) cells. The receptor density in MDCK cells is 50 times more than that in inner medullary collecting duct cells. To examine if muscarinic receptor activation influences Na-K-ATPase, the effects of a cholinergic agonist, carbachol, on Na-K-ATPase activity in MDCK cells were measured. Carbachol inhibited Na-K-ATPase activity in a time- and concentration-dependent manner. A maximum of approximately 80% of the enzyme activity was inhibited in 160 min with an EC50 of 5 microM carbachol. The inhibition of Na-K-ATPase activity was reversible; up to 80% of the enzyme activity was recovered within 4 h after carbachol was removed. The inhibitory effect of carbachol was blocked by a muscarinic antagonist atropine and by inhibitors of protein kinase C (PKC), 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine HCl, and N-(2-(methylamino)ethyl)-5-isoquinoline sulfonamide HCl. Direct activators of PKC, phorbol 12-myristate 13-acetate, N(n-heptyl)-5-chloro-1-naphthalene sulfonamide, and phosphatidyl serine, also inhibited Na-K-ATPase activity in MDCK cells, and their effect was also blocked by PKC inhibitors. These results indicate that cholinergic agonists inhibit Na-K-ATPase activity in MDCK cells by the activation of PKC. It is concluded that the inhibition of Na-K-ATPase by PKC may, in part, be responsible for the natriuretic action of cholinergic agonists, which have been shown to stimulate phosphoinositide hydrolysis in renal collecting duct cells.  相似文献   

6.
PURPOSE: To assess the response of rat urinary bladder regenerated by the homologous bladder acellular matrix graft (BAMG) to in vitro electrical and pharmacologic stimuli. MATERIALS AND METHODS: In Sprague-Dawley rats, partial cystectomy (>50%) was performed, followed by BAMG augmentation cystoplasty. After 4 months, organ bath studies of tissue strips in 10 were used to compare the contractility of the BAMG regenerates and the corresponding host detrusor smooth muscle. RESULTS: The BAMG regenerates exhibited contractile activity to electrical field stimulation and a qualitatively identical pattern of response to muscarinic, purinergic, alpha- and beta-adrenergic drug administration and nitric oxide. At 4 months after surgery, the maximum forces of contraction of the BAMG regenerates to carbachol stimulation amounted to close to 80% of the host bladder response. With electrical field stimulation, they equaled 44% and 62% of the host bladder response after 2.5 and 4 months, respectively. Histological and immunohistochemical studies confirmed the presence of receptors for neurotransmitters that these functional in vitro studies implied. CONCLUSIONS: The present study provides further evidence that augmentation cystoplasty with the BAMG leads to functional regeneration of the rat bladder detrusor smooth muscle.  相似文献   

7.
Activation of transfected muscarinic m1 acetylcholine receptors (m1AChR) has been linked to several signal transduction pathways which include phosphoinositide hydrolysis, arachidonic acid release and cAMP accumulation. In Chinese hamster ovary cells stably transfected with the rat m1AChR gene, carbachol elicited all three responses with EC50 values of 2.6, 3.8 and 76 microM, respectively. However, pilocarpine and the selective muscarinic agonist AF102B activated phosphoinositide hydrolysis (by 94 and 27% vs. carbachol, respectively), while antagonizing carbachol-mediated cAMP accumulation. Carbachol also activated (by 4-fold) adenylyl cyclase in membranes prepared from these cells, indicating independence of this signal from intracellular mediators. Moreover, carbachol and AF102B similarly elevated cytosolic Ca2+ in intact m1AChR-transfected cells. The ligand-selective cAMP accumulation, its independence from Ca2+ and the carbachol-activated adenylyl cyclase in membranes suggest that it represents an independent m1AChR-mediated signal, unrelated to phosphoinositide hydrolysis. Selective muscarinic ligands such as AF102B may independently activate distinct signalling pathways, which may be important for designing cholinergic replacement therapy for treating Alzheimer's disease.  相似文献   

8.
1. Pretreatment of bovine tracheal smooth muscle (BTSM) with histamine (1-100 microM, 1 h) induced a concentration-dependent desensitization of the contractile response to subsequently administered histamine, with a reduction of the maximum response of 72 +/- 8% (n = 5) following pre-exposure to 100 microM histamine. In contrast, concentration-response curves to the muscarinic agonist, methacholine were not affected following histamine pretreatment, indicating a homologous desensitization. Furthermore, concentration-response curves to NaF, a G-protein activator, were not altered following histamine pre-incubation. 2. The histamine H1-receptor (H1R) desensitization could be antagonized by mepyramine (an H1-receptor antagonist, 1 microM) but not by cimetidine (an H2-receptor antagonist, 10 microM), indicating that the desensitization occurred via stimulation of histamine H1-receptors, without evidence for the involvement of histamine H2-receptors. 3. Indomethacin (10 microM) did not block the H1R desensitization, suggesting no involvement of prostaglandins. Furthermore, histamine pre-incubation in calcium free medium still induced a functional uncoupling of H1R. 4. GF 109203X, a protein kinase C (PKC) inhibitor, and H-7, a non-selective kinase inhibitor, did not antagonize the homologous H1R desensitization. 5. The steady-state level of H1R mRNA, assessed by Northern blot analysis, was not affected by prolonged histamine exposure (100 microM, 0.5, 1, 2, 4, 16 and 24 h). 6. These results suggest that histamine induces desensitization of the H1R at the level of the receptor protein, which involves a mechanism independent of PKC, PKA, PKG and calcium influx, suggesting the involvement of a receptor-specific kinase.  相似文献   

9.
Oligodendroglial cells express many specific proteins, such as myelin basic protein (MBP), which are physiologically phosphorylated by protein kinase C (PKC). Diacylglycerols are physiological activators of PKC and can be liberated from phospholipids by the direct receptor-mediated activation of phospholipase C (PL-C) or indirectly via the activation of phospholipase D (PL-D). In a well-characterized human oligodendroglioma (HOG) cell line, PL-C (measured by release of [3H]inositol phosphates) and PL-D (formation of [3H]myristoylated or palmitoylated phosphatidylethanol) were activated by both carbachol (blocked by pirenzepine, suggesting an M1 receptor) and histamine (H1 receptor) but not glutamate, bradykinin, or phenylephrine. PL-C stimulation by carbachol or histamine was completely inhibited by short-term treatment (< 30 min) with phorbol ester (TPA), a PKC activator. In contrast, PL-D activation by either carbachol or histamine was stimulated in additive fashion by TPA, suggesting at least two distinct mechanisms for PL-D activation. Down regulation of PKC by prolonged (24 hr) treatment with TPA reversed the inhibitory effects of TPA on PL-C and the stimulatory effects on PL-D. However, the PKC inhibitors H-7 and galactosylsphingosine did not inhibit the TPA-mediated stimulation of PLD while the less-specific PKC inhibitor, staurosporine, was only partially inhibitory. Preexposure of cells to carbachol, greatly reduced both PL-C and PL-D activation by carbachol, suggesting homologous desensitization. Time-course studies indicated that PL-D activation (10 sec or less) was at least as fast as PL-C activation, and the affinity of carbachol and histamine for the receptor coupled to either phospholipase (EC50 = 5-10 microM) was about the same.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Muscarinic receptors expressed by rat oligodendrocyte primary cultures were examined by measuring changes in second messengers following exposure to carbachol, an acetylcholine analog, and by polymerase chain reaction. Inositol phosphate levels were measured in [3H]myo-inositol-labelled young oligodendrocyte cultures following stimulation with carbachol. Atropine, a specific muscarinic antagonist, prevented the carbachol-induced accumulation of inositol phosphates. The formation of inositol trisphosphate was concentration- and time-dependent, with the peak at 100 microM carbachol and 10 min. Carbachol increased intracellular calcium levels, which were dependent both on the mobilization of intracellular stores and influx of extracellular calcium. In initial experiments with more selective antagonists, the mobilization of intracellular calcium was preferentially inhibited by pirenzepine, a selective M1 antagonist, but not methoctramine, a selective M2 antagonist, suggesting M1 muscarinic receptor involvement. A role for protein kinase C in the regulation of carbachol-stimulated inositol phosphate formation and intracellular calcium mobilization was demonstrated, as acute pretreatment with phorbol-12,13-myristate acetate abolished the formation of both second messengers. Pretreatment with 100 microM carbachol abolished the 40% increase in the cyclic AMP accumulation stimulated by isoproterenol, a specific beta-adrenergic agonist. In turn, the inhibition was alleviated by pretreatment with atropine, suggesting muscarinic receptor involvement. Polymerase chain reaction carried out with specific m1 and m2 muscarinic receptor oligonucleotide primers, confirmed that these cells express, at least, the two muscarinic receptor subtypes. Without excluding the expression of other subtypes, these results suggest that developing oligodendrocytes express m1 (M1) and m2 (M2) muscarinic receptors capable of mediating phosphoinositide hydrolysis, mobilization of intracellular calcium and the attenuation of beta-adrenergic stimulation of cyclic AMP formation.  相似文献   

11.
1-Azabicyclo[2,2,2]octane,3-(6-chloropyrazinyl)maleate (L-689,660) reportedly is an agonist with selectivity for M1 and M3 muscarinic receptors. We confirmed this in functional assays of brain muscarinic receptors and of cloned human muscarinic receptors transfected into Chinese hamster ovary (CHO-K1) cells. For stimulation of phosphoinositide turnover in rat cortical and hippocampal dissociated tissue, L-689,660 was a partial agonist (24% and 26% intrinsic activity, respectively, relative to oxotremorine-M) with EC50 values of 71 microM and 118 microM, respectively. At putative M4 receptors coupled to cyclic AMP inhibition in rat striatum, however, L-689,660 acted as a competitive antagonist (KB = 0.4 microM). Furthermore, at putative M2/M4 autoreceptors that regulate acetylcholine release in the hippocampus, the drug also behaved as an antagonist (KB = 2.1 microM). These data indicated that L-689,660 behaves as a postsynaptic agonist/presynaptic antagonist at central cholinergic synapses. Further aspects of the selectivity of the drug for specific muscarinic receptor subtypes were revealed with phosphoinositide turnover assays of cloned muscarinic receptors expressed in CHO-K1 cells. L-689,660 was a partial agonist at transfected hm1 and hm3 receptors and was more potent than oxotremorine-M; however, the drug was inactive at transfected hm5 receptors. Partial agonist activity at hm1 and hm3 muscarinic receptors was present even after using alkylation to reduce receptor numbers to levels comparable to that level found in the hm5 cell line. Thus, with functional assays either with brain tissue or with transfected cell lines, L-689,660 was shown to be an agonist for the M1 and M3 receptors but not for M5 or M4 receptors.  相似文献   

12.
Intracellular calcium measurements were performed in cultured human trabecular meshwork cells preloaded with the cell permeant dye fura 2-AM. Fluctuations in calcium levels were then monitored with microscope-based ratio fluorometry. Carbachol increased intracellular calcium in a dose-dependent manner; as did oxotremorine-M, aceclidine, and pilocarpine. Carbachol's effect was blocked by the non-selective muscarinic antagonist atropine, as well as by muscarinic receptor subtype-selective antagonists such as pirenzepine (M1-selective), p-fHHSiD (M3-selective), and 4-DAMP (M1, M3 subtypes). Rank order of potencies for the antagonists' effects was atropine = 4-DAMP > p-fHHSiD > pirenzepine, a profile suggesting that the M3 receptor subtype is essential in the carbachol effect. Phospholipase C activity was estimated via measurement of total production of inositol phosphates in cultured human trabecular meshwork cells pre-exposed to 3H-myoinositol. In these cells, carbachol also stimulated phosphoinositide production in a dose-dependent manner, and an antagonist profile similar to that seen for calcium response was obtained when carbachol was used as the effector. The data indicate that muscarinic effects on cultured human trabecular meshwork calcium mobilization and phospholipase C activity are mediated by an M3-like receptor subtype. Therefore, the muscarinic M3 receptor may play a role in trabecular meshwork cell function(s).  相似文献   

13.
14.
To examine the effects of the combined muscarinic ml-agonist/m2-antagonist Lu 25-109 on regulated processing of the amyloid protein precursor (APP), we used both transfected cells expressing human muscarinic m1 or m2 acetylcholine receptors, and fresh rat hippocampal slices. Lu 25-109 readily stimulated APPs secretion from HEK 293 cells overexpressing m1, but not m2, receptors, as well as from the hippocampal brain slices. Time-course analyses revealed a rapid (5-35 minutes), and a delayed (55-75 minutes) secretory response to Lu 25-109 with distinct concentration profiles suggesting two distinct cell biological mechanisms. Both responses appeared to reflect post-translational mechanisms because levels of APP message were unchanged after 60 minutes of stimulation with Lu 25-109. In comparison to carbachol, Lu 25-109 had a significantly lower intrinsic activity at muscarinic m1 receptors, compatible with a pharmacological profile as a partial agonist at recombinantly expressed m1 receptors. In as much as stimulation of APPs secretion is associated with reduced formation of A beta peptides, Lu 25-109 may be useful to reduce A beta generation, and thus, slow amyloid plaque formation. Moreover, Lu 25-109 may be useful in promoting the known neurotrophic and neuroprotective biological functions of secreted APPs.  相似文献   

15.
Olopatadine (AL-4943A; KW-4679) [(Z)-11-[3-(dimethylamino)propylidene]-6, 11-dihydrodibenz[b,e]oxepine-2-acetic acid hydrochloride] is an antiallergic/antihistaminic drug under development for topical ocular use. The effects of the compound on release of proinflammatory mediators (histamine, tryptase and prostaglandin D2) from monodispersed human conjunctival mast cells were assessed. Histamine receptor subtype binding affinities and functional potencies were determined with ligand binding and phosphoinositide turnover assays, respectively. Olopatadine inhibited the release of histamine, tryptase and prostaglandin D2, in a concentration-dependent manner (IC50 = 559 microM). Evaluation of the interaction of olopatadine with histamine receptors revealed a relatively high affinity for the H1 receptor (Ki = 31.6 nM, pKi = 7.5 +/- 0.1, n = 7) but lower affinities for H2 receptors (Ki = 100 microM, pKi = 4.0 +/- 0.19, n = 7) and H3 receptors (Ki = 79.4 microM, pKi = 4.1 +/- 0.16, n = 7). The H1 selectivity of olopatadine was superior to that of other ocularly used antihistamines studied, such as ketotifen, levocabastine, antazoline and pheniramine. The profiling of olopatadine in 42 nonhistamine receptor binding assays revealed that olopatadine interacts with only two nonhistamine receptor/uptake sites to any significant degree (pIC50 < or = 5-6). Olopatadine inhibited histamine-induced phosphoinositide turnover in human conjunctival epithelial cells (IC50 = 10 nM, pIC50 = 8.0, n = 4) and in other human ocular cells (IC50 = 15.8-31.6 nM, pIC50 = 7.5-7.8) and exhibited apparent noncompetitive antagonist properties in these cells, with an estimated dissociation constant (Kb) of 19.9 nM (pKb = 7.7, n = 6). This combination of mast cell mediator release inhibition and selective H1 receptor antagonism suggests that olopatadine may be particularly useful in the treatment of ocular allergic diseases. Indeed, olopatadine has recently shown clinical efficacy in an allergic conjunctivitis model in human subjects.  相似文献   

16.
The aim of the research was to characterize muscarinic receptors of bovine ciliary muscle and to investigate the desensitization process. The role of protein kinase C was analyzed. The results show that muscarinic receptors of bovine ciliary muscle have the pharmacological characteristics of the M3 subtype. Acute exposure to phorbol esters (1 microM phorbol 12,13-dibutyrate, PDB, or 0.1 microM phorbol 12-myristate 13-acetate, PMA, for 15 and 5 min, respectively) resulted in antagonism of muscarinic receptor-mediated contraction. Long-term pretreatment (18 h) with PMA to down-regulate protein kinase C resulted in potentiation of carbachol-induced contraction, reduction of agonist-induced desensitization and loss of phorbol ester-induced desensitization. Staurosporine (3 microM) and H7 [1-(5-isoquinolinesulfonyl)-2-methyl-piperazine] (1 microM), protein kinase C inhibitors, produced a significant potentiation of the contractile effect of carbachol, reduced the desensitization produced by repeated addition of carbachol and suppressed that induced by phorbol esters. In vitro incubation with carbachol, PDB or PMA did not cause any modification of the binding of labeled [3H]quinuclidinyl benzilate. In vitro incubation with PDB and PMA produced, as expected, a significant translocation of protein kinase C from the cytosol to the membrane. The incubation of the ciliary muscle with carbachol, using the protocol of exposure that induced maximal desensitization of contractile responses, produced a significant redistribution of the enzyme from the cytosol to the membrane. These findings suggest that agonist-induced modulation of functional cholinergic sensitivity in ciliary muscle is correlated, at least partially, to the translocation of protein kinase C from the cytosol to the membrane. The desensitization by phorbol esters is completely due to protein kinase C activation; during the desensitization process, direct modification of the density and affinity of muscarinic receptors is not involved.  相似文献   

17.
The postjunctional muscarinic receptors mediating contraction of human bronchial smooth muscle have been characterized using four nonselective muscarinic receptor agonists and eight subtype selective and nonselective muscarinic antagonists. Carbachol, methacholine, oxotremorine M and (+)-cis-dioxolane all caused concentration-related contractions of human bronchial smooth muscle with a rank order of potency (pD2) of (+)-cis-dioxolane (7.3 +/- 0.2) > oxotremorine M (6.7 +/- 0.2) > carbachol (6.4 +/- 0.1) > methacholine (5.8 +/- 0.2, n = 5 for all). Maximum contractions were not significantly different between agonists, whether expressed as absolute my tension changes or as a percentage of the maximum response to 0.3 mM histamine. Antagonist apparent affinities (pKB) were determined against carbachol-induced contractions and the following rank order was obtained; 4-DAMP (9.4 +/- 0.3) > or = atropine (9.1 +/- 0.1) > zamifenacin (7.6 +/- 0.1) > hexahydrosiladifenidol (HHSiD; 7.1 +/- 0.1) > or = himbacine (7.0 +/- 0.3) > or = pirenzepine (6.8 +/- 0.2) > para-fluoro-hexahydrosiladifenidol (p-F-HHSiD; 6.7 +/- 0.1) > methoctramine (5.3 +/- 0.2). This rank order of antagonist affinities is consistent with activation of M3 receptors. The affinities of HHSiD, p-F-HHSiD and zamifenacin were, however, lower than those reported in guinea pig trachea.  相似文献   

18.
Mild depolarisation (20 mM KCl) synergistically enhances the ability of a muscarinic agonist to activate phosphoinositide turnover and to elevate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in cerebellar granule cells in primary culture. The effects of lithium on this intense stimulation of phosphoinositide turnover was studied. Lithium causes depletion of cytoplasmic inositol and phosphoinositides, which results in the inhibition of phosphoinositide turnover within 15 min and the return of Ins(1,4,5)P3 to basal levels at this time. This inhibition could not be reversed by culturing and preincubating cerebellar granule cells in concentrations of inositol similar to those detected in the CSF. Inositol concentrations substantially in excess of those in the CSF not only reversed the effects of lithium on stimulated Ins(1,4,5)P3 levels, but significantly enhanced this level in comparison with stimulation in the absence of lithium. sn-1,2-Diacylglycerol elevation during stimulated phosphoinositide turnover was also disrupted by lithium, but in contrast to Ins(1,4,5)3, the presence of lithium resulted in a transient enhancement of the elevation evoked by carbachol plus mild KCl depolarisation, which was reversed by 500 microM inositol, but not by 200 microM inositol. The implications of these phenomena in relation to the mechanism of action of lithium in the treatment of manic depression are discussed.  相似文献   

19.
In the present study, we report that low concentrations of the glutamate ionotropic agonist kainate decreased the turnover of [3H]-phosphoinositides ([3H]-InsPs) induced by muscarinic receptors in the chick embryonic retina. When 100 microM carbachol was used, the estimated IC50 value for kainate was 0.2 microM and the maximal inhibition of approximately 50% was obtained with 1 microM or higher concentrations of the glutamatergic agonist. Our data also show that veratridine, a neurotoxin that increases the permeability of voltage-sensitive sodium channels, had no effect on [3H]-InsPs levels of the embryonic retina. However, 50 microM veratridine, but not 50 mM KCl, inhibited approximately 65% of the retinal response to carbachol. While carbachol increased [3H]-InsPs levels from 241.2 +/- 38.0 to 2044.5 +/- 299.9 cpm/mg protein, retinal response decreased to 861.6 +/- 113.9 cpm/mg protein when tissues were incubated with carbachol plus veratridine. These results suggest that the accumulation of phosphoinositides induced by activation of muscarinic receptors can be inhibited by the influx of Na+ ions triggered by activation of kainate receptors or opening of voltage-sensitive sodium channels in the chick embryonic retina.  相似文献   

20.
To determine if muscarinic receptor-activation plays a role in oligodendrocyte development, the effect of carbachol a stable acetylcholine analog, on gene expression and proliferation was investigated. Using Northern blot analysis we showed that carbachol caused a time and concentration-dependent increase in c-fos mRNA. This effect was blocked by atropine, a non-selective muscarinic antagonist. In addition, the muscarinic-stimulated c-fos increase was inhibited by 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H-7), a potent inhibitor of protein kinase C (PKC), but not by N-2-(p-bromocinnamylamino)-ethyl-5-isoquinoline-sulfonamide (H-89), a potent inhibitor of protein kinase A, suggesting the involvement of PKC in mediating the response. Down-regulation of PKC by overnight pre-treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) blocked only the phorbol ester-stimulated c-fos accumulation while no effect was observed in the carbachol-induced response. These results suggested that carbachol stimulated an H-7 sensitive PKC pathway which may be different than that activated by TPA. Further evidence for two separate mechanisms of proto-oncogene induction was provided by the additive effect of carbachol and TPA. Induction of c-fos mRNA by carbachol was dependent on both influx of extracellular Ca2+ and release from intracellular stores, as both EDTA and BAPTA blocked the response. Since activation of muscarinic receptors can affect cell division in other cellular systems, the effect of carbachol on [3H]thymidine and bromodeoxyuridine incorporation into oligodendrocyte DNA was measured. Carbachol stimulated DNA synthesis in oligodendrocyte progenitors. This effect was mediated by muscarinic receptors as [3H]thymidine incorporation was prevented or significantly reduced by the addition of atropine. In conclusion, the present findings suggest that, the neurotransmitter, acetylcholine may act as a trophic factor in developing oligodendrocytes, regulating their growth and development in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号