共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
大功率半导体激光器驱动电源的设计 总被引:14,自引:4,他引:14
设计一种大功率半导体激光器的驱动电源。恒稳电流范围为 0~ 10 A,稳流精度为 1m A,脉冲输出电流频率为 10 KHz,脉冲电流的占空比为 1∶ 10 ,脉冲电流幅值为 0~ 10 A可调 相似文献
4.
为了满足大功率半导体激光器脉冲应用的实际需求, 针对单脉冲内电流平顶下降问题和重复性情况下电流稳定性降低的问题, 设计了一种多参数宽范围可调的高精度高稳定脉冲驱动电源。该电源以大功率场效应晶体管为核心, 通过现场可编程门阵列产生的高精度时序波形来完成单脉冲内的上升沿调控和栅极控制电压补偿, 通过微控制器结合电流采样的闭环控制方案实现重频运行下的电流高稳定输出。结果表明, 在输出电流100 A、脉冲宽度400 μs、重复频率1 kHz的最大功率输出驱动二极管负载时, 驱动电流上升沿过冲幅度小于0.5%、单脉冲内电流衰减小于0.2%、重复率脉冲不稳定度小于0.1%;在同样输出条件下驱动半导体激光器, 其在单脉冲内光功率过冲小于2%, 重复光脉冲不稳定度小于0.2%。该研究有助于提高脉冲电源脉冲电流稳定性, 对现有脉冲电源结构的改进具有一定的参考意义。 相似文献
5.
为了解决布里渊光纤传感系统中半导体激光器光源输出功率和波长易受驱动电流和温度影响的问题,设计了一种高精度恒流驱动和温控电路。该电路利用深度负反馈积分电路对激光器驱动电流进行精密的恒流控制,同时采用集成温度控制芯片MAX1978控制半导体制冷片的工作电流,实现对激光器工作温度的精确控制。结果表明,本设计实现了驱动电流0mA~100mA可调,电流控制最大相对误差为0.06%,电流稳定度为0.02%,温度控制最大误差为0.03℃,在温控的条件下,光功率稳定性达到0.5%,最大漂移量为0.005dBm。该设计实现了对电流和温度的有效控制,保证了输出光的稳定性。 相似文献
6.
7.
大功率半导体激光器驱动电源的设计 总被引:7,自引:3,他引:7
高能激光系统通常需要多种输出模式的驱动电源,现有电源存在输出模式单一的问题。采用能量压缩技术和电流串联负反馈技术实现了多输出模式半导体激光器驱动电源。分析了特殊设计高输入阻抗差分运算电路作为负反馈网络的工作原理,推导出了精确的参考电压与输出电流的关系式。最后,将所研制的驱动电源应用于国内首台400W工业级光纤激光器系统中,驱动电源实现了0~26A连续可调、稳定度优于0.15‰的连续电流和准连续电流输出。测试结果验证了设计思路的可行性,实现了半导体激光器驱动电源的多输出模式和高电流稳定度。 相似文献
8.
设计了一种经济实用的半导体激光器驱动电源,具有自动电流控制(ACC)和自动功率控制(APC)两种控制方式.ACC控制利用电流采样反馈,从而使电流漂移最小、LD输出稳定性最大.APC 控制利用内接受光二极管,将其监测电流通过反馈网络与设定值比较,形成闭环负反馈控制.设计中采用纯积分环节作为驱动调节器,避免了系统超调和振荡,又由于积分调节器具有滞后特性,利用此特点,实现了激光器的慢启动.温控电路采用比例积分调节器,通过半导体制冷器,使激光器工作在恒温状态下,同时引入积分分离思想,进而抑制积分饱和.实验结果表明,该系统驱动电流的稳定度为满量程的±0.05%,温度稳定度为±0.1℃. 相似文献
9.
10.
直流恒流源与多波形恒流脉冲电流源在激励半导体激光器、贵金属精密电镀、小型蓄电池充电、电火花机械加工中逐步得到广泛应用。我们所研制的 LD-1型半导体激光器驱动电源,主要应用于激励激光二极管做驱动源,同时也可以在贵金属电镀、小型蓄电池快速充电等方面应用。 相似文献
11.
12.
半导体激光器稳功率脉冲电源设计 总被引:14,自引:0,他引:14
根据半导体激光器的温度-驱动电流-光功率特性,通过脉冲驱动技术、功率控制技术和抗浪涌技术的综合应用,设计、制作了一种实用的半导体激光器脉冲驱动电源,解决了半导体激光器应用中常见的浪涌冲击问题和宽温度范围内脉冲驱动时的发光功率同步控制难题. 相似文献
13.
对于 Gb/s 量级的光纤通信系统,高速半导体激光器光源是关键器件。文章分析了限制半导体激光器速率的因素,提出了改善激光器带宽的途径,讨论了器件的制造。 相似文献
14.
15.
16.
17.
本文阐述了高精密恒流源产品自动测试系统的建立和测试程序的编制,分析了此测试系统的测量不确定度,并介绍了此测试系统的应用和未来的发展。 相似文献
18.
976 nm高效率半导体激光器是这几年研究的热点,在固体激光器泵浦领域有广阔的应用。通过优化半导体激光器材料外延结构中包覆层和波导层的铝组分,降低了工作电压;通过采用微通道水冷系统,并进行优化降低了热阻,从而提高了室温下的电光转换效率。25℃室温连续测试条件下,1 cm的线阵列(巴条),2 mm腔长,50%填充因子,在110 A下,出光功率为114.2 W,电压为1.46 V,电光转换效率为71%。15条微通道封装成的垂直叠阵,进行光束整形后,获得了室温976 nm连续输出功率1 500 W,电光转换效率大于70%。 相似文献
19.
20.
高效率大功率连续半导体激光器 总被引:2,自引:1,他引:2
从大功率半导体激光器的工作机理出发,对影响激光器电光转换效率的主要因素,如激光器的斜率效率ηd、阈值电流Ith、开启电压V0、串联电阻Rs以及工作电流I等进行了分析,进而讨论了提高电光转换效率的主要技术途径。通过对应变量子阱大光腔激光器外延材料开启特性的优化、大功率激光器芯片横向限制工艺的改进以及对大功率微通道热沉制作等技术的研究,制作了808nm连续半导体激光器阵列。在工作电流140A时,阵列工作电压为1.83V,输出功率145W,电光转换效率达到56.6%。 相似文献