首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-transistor latch in SOI MOSFETs   总被引:1,自引:0,他引:1  
A single-transistor latch phenomenon observed in silicon-on-insulator (SOI) MOSFETs is reported. This latch effect, which occurs at high drain biases, is an extreme case of floating-body effects which are present in SOI MOSFETs. The floating body results in positive feedback between the impact ionization current, body-to-source diode forward bias, and transistor currents. At large drain voltages, this positive feedback can maintain a high-drain-to-source current even when the MOS gate is biased well below its threshold voltage  相似文献   

2.
For the first time, we report the combined application of a SiGe source and a delta-doped p+ region in a PD SOI MOSFET to minimize the impact of floating body effect on both the drain breakdown voltage and the single transistor latch. Our results demonstrate that the proposed SOI structure exhibits as large as 200% improvement in the breakdown voltage and is completely immune to single transistor latch when compared to the conventional SOI MOSFET thus improving the reliability of these structures in VLSI applications  相似文献   

3.
A model based on SOI MOSFET and BJT device theories is developed to describe the current kink and breakdown phenomena in thin-film SOI MOSFET drain-source current-voltage characteristics operated in strong inversion. The modulation of MOSFET current by raised floating body potential is discussed to provide an insight for understanding the suppression of current kink in fully depleted thin-film SOI devices. The proposed analytical model successfully simulates the drain current-voltage characteristics of thin-film SOI n-MOSFETs fabricated on SIMOX wafers  相似文献   

4.
The impact of hot-carrier degradation on drain current (ID) hysteresis and switch-off ID transients of thin gate oxide floating body PD SOI nMOSFETs is analyzed. An extended characterization of these floating body effects (FBEs) is carried out for a wide range of transistor geometries and bias conditions. The results show a link between the hot-carrier-induced damage of the front channel and the reduction of the FBEs. This is further supported by unbiased thermal annealing experiments, which are found to give rise to a partial recovery of the hot-carrier induced damage and FBEs.  相似文献   

5.
The hysteresis effect between forward and reverse drain-source voltage (VDS) sweeps in the transient output characteristics is studied in ultra-thin gate oxide floating-body partially depleted (PD) silicon-on-insulator (SOI) n-MOSFETs. In this study, two mechanisms including direct-tunneling and impact ionization are taken into account. The transient variation of the floating body potential during sweeps leads to the threshold voltage (VTH) unstable, hence the hysteresis delay occurs. It is proposed that hole tunneling from valence band (HVB) causes positive hysteresis at lower drain-source voltage (VDS) region, while impact ionization (II) induced floating body charging leads to opposite phenomenon at high VDS, thus causing threshold voltage unstable in drain bias switching. And our findings reveal that hysteresis effect can be a serious reliability issue in SOI devices with floating body configuration.  相似文献   

6.
We introduce Silicon/indium arsenide (Si/InAs) source submicron-device structure in order to minimize the impact of floating body effect on both the drain breakdown voltage and single transistor latch in ultra thin SOI MOSFETs. The potential barrier of valence band between source and body reduces by applying the Indium Arsenide (InAs) layer at the source region. Therefore, we can improve the drain breakdown by suppressing the parasitic NPN bipolar device and the hole accumulation in the body. As confirmed by 2D simulation results, the proposed structure provides the excellent performance compared with a conventional SOI MOSFET thus improving the reliability of this structure in VLSI applications.  相似文献   

7.
The design of diamond-shaped body-contacted (DSBC) devices using standard layers in a 0.35?µm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor process is described in this article. The technology is based on a manufacturable partially depleted SOI process targeted for radio frequency applications. The experimental measurements of drain induced barrier lowering for the fabricated DSBC structure showed suppression of floating body effects (FBE) at the promising rate of 24?mV/V. The measurement results confirmed current drive (I DS) improvement by 25% at V DS?=?1.5?V and V GS?=?1.5?V compared to conventional body-tied-source (BTS) device. A constant and steady output conductance (g DS) in the saturation region was observed for the DSBC structure. The gate trans-conductance (g m) is improved by 34% at V DS?=?1.5?V and V GS?=?1.5?V compared to conventional BTS device. Three-dimensional device simulation provides insight on FBE suppression and channel current improvement. Experimental results confirmed the area efficiency of the DSBC structure and its excellent current drive performance.  相似文献   

8.
We have fabricated a grounded body silicon-on-insulator (GBSOI) nMOSFET by wafer bonding and etch back technology. The GBSOI has all the inherent advantages of SOI such as speed and radiation hardness, while such problems as the low breakdown voltage and kink effect are completely solved due to the p+ polysilicon grounded body. It also has high packing density because several SOI bodies and the ground line are connected via the p+ polysilicon layer buried under the channel region  相似文献   

9.
This paper reports the investigation of the direct tunneling-induced floating-body effect in 90-nm H-gate floating body partially depleted (PD) silicon-on-insulator (SOI) pMOSFETs with dynamic-threshold MOS (DTMOS)-like behavior and low input power consumption. Based on this paper, with the decrease of the gate-oxide thickness, the direct-tunneling current will dominate the floating body potential of H-gate PD SOI pMOSFETs, which makes the floating body potential highly gate voltage dependent like DTMOS behavior with a larger drain current. However, the input power consumption is still kept lower. Simultaneously, the highly gate voltage dependent direct-tunneling current will reduce the influence of the impact ionization current on the neutral region with a higher kink onset-voltage. It contributes to the pseudo-kink-free phenomenon in 90-nm H-gate floating body PD SOI pMOSFETs.  相似文献   

10.
High-temperature and self-heating effects in fully depleted SOI MOSFETs   总被引:1,自引:0,他引:1  
In this paper, the high-temperature and self-heating effects in the fully depleted enhancement lightly doped SOI n-MOSFETs are investigated over a wide range of temperatures from 300 to 600 °K by using the SILVACO1 TCAD tools. In particular, we have studied their current-voltage characteristics (ID-VGS and ID-VDS), threshold voltages and propagation delays. Simulation results show that there exists a biasing point where the drain current and the transconductance are temperature independent. Such a point is known as the zero temperature coefficient (ZTC) bias point. The drain current ZTC bias points are identified in both the linear and saturation regions whereas the transconductance ZTC bias point exists only in the saturation region. We have observed that decreasing the film thickness could reduce the threshold voltage sensitivity of the SOI MOSFET with temperature and that the drain current decreases with increasing temperature. We have also noted that due to the self-heating effects, the drain current decreases with increasing drain bias exhibiting a negative conductance and that the self-heating effects reduced at a higher operating temperature. Self-heating effects are more pronounced for higher gate biases and thinner silicon films whereas the bulk device shows negligible self-heating effects.  相似文献   

11.
An analytical snapback model for n-channel silicon-on-insulator (SOI) transistors with body either tied to the source or floating is been presented. The snapback is modeled as a nonlinear feedback system leading to negative transconductances from which the jump in current can occur at the point of instability. The crux of this model is based on the strong dependence of the transistor threshold voltage on the body potential when the body potential is above the transistor surface potential at strong inversion. No parasitic bipolar action is invoked to account for the snapback phenomena. The model correctly predicts the occurrence of hysteresis/latch phenomena and the conditions under which the current jump occurs despite some gross approximations in the electric field and the injection level. Results obtained from this model show good agreement with experimental data measured from SIMOX devices fabricated on 0.3-μm epi film  相似文献   

12.
We report the extensive study on ac floating body effects of different SOI MOSFET technologies. Besides the severe kink and resultant noise overshoot and degraded-distortion in partially depleted (PD) floating body SOI MOSFET's, we have investigated the residue ac floating body effects in fully depleted (FD) floating body SOI MOSFET's, and the different body contacts on PD SOI technologies. It is important to note that there is a universal correlation between ac kink effect and Lorentzian-like noise overshoot regardless of whether the body is floating or grounded. In addition, it was found that third-order harmonic distortion is very sensitive to floating body induced kink or deviation on output conductance due to the finite voltage drop of body resistance. These results provide device design guidelines for SOI MOSFET technologies to achieve comparable low-frequency noise and linearity with Bulk MOSFET's  相似文献   

13.
AC floating body effects in PD SOI nMOSFETs operated at high temperature are investigated. Both source/body and drain/body junction diode characteristics are greatly influenced by temperature, significantly impacting the ac kink effect as well its low-frequency (LF) noise characteristics. This is especially true for the pre-dc kink operation at high temperature. The increase of junction thermal generation current becomes an important body charging source and induces the LF Lorentzian-like excess noise  相似文献   

14.
A new type of abnormal drain current (ADC) effect in fully depleted (FD) silicon-on-insulator (SOI) MOSFETs is reported. It is found that the drain current becomes abnormally large for specific front- and back-gate voltages. The drain current exhibits a transient effect due to the floating body behavior and no longer follows the conventional interface coupling theory for these specific front- and back-gate bias conditions. It is shown that the ADC can be generated by the combination of gate-induced drain leakage, transient effects, and parasitic bipolar transistor action in FD SOI MOSFETs.  相似文献   

15.
Floating-body effects triggered by impact ionization in fully depleted submicrometer silicon-on-insulator (SOI) MOSFETs are analyzed based on two-dimensional device simulations. The parasitic bipolar junction transistor (BJT) effects are emphasized, but the kink effect and its disappearance in the fully depleted device are first explained physically to provide a basis for the BJT analysis. The results of simulations of the BJT-induced breakdown and latch phenomena are given, and parametric dependences are examined to give physical insight for optimal design. The analysis further relates the DC breakdown and latch mechanisms in the fully depleted submicrometer SOI MOSFET to actual BJT-related problems in an operating SOI CMOS circuit. A comprehensive understanding of the floating-body effects is attained, and a device design to control them utilizing a lightly doped source (LDS) is suggested and shown to be feasible  相似文献   

16.
An analytical model for SOI nMOSFET with a floating body is developed to describe the Ids-Vds characteristics. Considering all current components in MOSFET as well as parasitic BJT, this study evaluates body potential, investigates the correlations among many device parameters, and characterizes the various phenomena in floating body: threshold voltage reduction, kink effect, output conductance increment, and breakdown voltage reduction. This study also provides a good physical insight on the role of the parasitic current components in the overall device operation. Our model explains the dependence of the channel length on the Ids-Vds characteristics with parasitic BJT current gain. Results obtained from this model are in good agreement with the experimental Ids-V ds curves for various bias and geometry conditions  相似文献   

17.
The impact of static (DC) and dynamic (AC) degradation on SOI “smart-cut” floating body MOSFETs, was investigated by means of deep level transient spectroscopy (DLTS). The study was based on drain current signal recording, immediately after the transistor transition from OFF- to ON-state. In order to isolate the activity of capture/emission carrier mechanisms, undesirable parasitic effects such as drain current overshoot were suppressed by appropriately biasing the transistor substrates. Under DC degradation regime, DLTS spectra disclosed that carrier capture/emission process occurred through discrete traps governed by thermally activated mechanisms. Furthermore, polarization phenomena emerged. Under AC degradation regime, although the existence of interface states in Si-SiO2 interface was dominant, the revelation of shallow traps in low temperature domain was also monitored.  相似文献   

18.
The behavior of transients in the drain current of partially-depleted (PD) SOI MOSFET's down to Leff=0.2 μm is examined as a function of drain bias, gate pulses of varying magnitude (VGS), pulse duration, and pulse frequency. At fixed VDS, the gate is pulsed to values ranging from 0.1 V above VT to VGS=VDS. A slow transient is seen when the drain is biased at a VDS where the current kink is observable. This slow transient can be on the order of microseconds depending on the relative magnitude of the impact ionization rate. For short times after the pulse edge or for very short pulses at low frequencies, it is shown that the subthreshold drain current value can be very different from the corresponding DC, and that the kink characteristic of PD MOSFET's disappears. However, the kink values can be approached when the pulse frequency and/or duration applied to the gate is increased, due to the latent charge maintained in the floating body at higher frequencies. No transient current effects were observed in fully-depleted SOI MOSFET's  相似文献   

19.
A model is proposed to explain the anomalous current-voltage characteristics of ESFI MOS transistors. Due to the floating state the substrate potential of the ESFI transistor is increasing with increasing majority carrier current flowing through the substrate to source. In the region of multiplication by avalanche that effect will get quite pronounced. The change of substrate potential yields a change of the threshold voltage hereby increasing the drain current and resulting a bend in the ID(UD) curves. The assumptions of the model have been justified by additional experiments as with illumination of light or increased temperatures. Based on the physical model a computer program was developed to simulate the ID(UD) characteristics of ESFI MOS transistors of the enhancement type, resulting good agreement between measured and simulated characteristics.  相似文献   

20.
Fully‐depleted silicon‐on‐insulator (FD‐SOI) devices with a 15 nm SOI layer thickness and 60 nm gate lengths for analog applications have been investigated. The Si selective epitaxial growth (SEG) process was well optimized. Both the singleraised (SR) and double‐raised (DR) source/drain (S/D) processes have been studied to reduce parasitic series resistance and improve device performance. For the DR S/D process, the saturation currents of both NMOS and PMOS are improved by 8 and 18%, respectively, compared with the SR S/D process. The self‐heating effect is evaluated for both body contact and body floating SOI devices. The body contact transistor shows a reduced self‐heating ratio, compared with the body floating transistor. The static noise margin of an SOI device with a 1.1 µm2 6T‐SRAM cell is 190 mV, and the ring oscillator speed is improved by 25 % compared with bulk devices. The DR S/D process shows a higher open loop voltage gain than the SR S/D process. A 15 nm ultra‐thin body (UTB) SOI device with a DR S/D process shows the same level of noise characteristics at both the body contact and body floating transistors. Also, we observed that noise characteristics of a 15 nm UTB SOI device are comparable to those of bulk Si devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号