首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Covalent attachment of ubiquitin to other intracellular proteins is essential for many physiological processes in eukaryotes, including selective protein degradation. Selection of proteins for ubiquitin conjugation is accomplished, in part, by a group of enzymes designated E2s or ubiquitin-conjugating enzymes (UBCs). At least six types of E2s have been identified in the plant Arabidopsis thaliana; each type is encoded by a small gene family. Previously, we described the isolation and characterization of two three-member gene families, designated AtUBC1-3 and AtUBC4-6, encoding two of these E2 types. Here, we investigated the expression patterns, of the AtUBC1-3 and AtUBC4-6 genes by the histochemical analysis of transgenic Arabidopsis containing the corresponding promoters fused to the beta-glucuronidase-coding region. Staining patterns showed that these genes are active in many stages of development and some aspects of cell death, but are not induced by heat stress. Within the two gene families, individual members exhibited both overlapping and complementary expression patterns, indicating that at least one member of each gene family is expressed in most cell types and at most developmental stages. Different composite patterns of expression were observed between the AtUBC1-3 and AtUBC4-6 families, suggesting distinct biochemical and/or physiological functions for the encoded E2s in Arabidopsis.  相似文献   

2.
The 26 S proteasome is a multisubunit proteolytic complex responsible for degrading eukaryotic proteins targeted by ubiquitin modification. Substrate recognition by the complex is presumed to be mediated by one or more common receptor(s) with affinity for multiubiquitin chains, especially those internally linked through lysine 48. We have identified previously a candidate for one such receptor from diverse species, designated here as Mcb1 for Multiubiquitin chain-binding protein, based on its ability to bind Lys48-linked multiubiquitin chains and its location within the 26 S proteasome complex. Even though Mcb1 is likely not the only receptor in yeast, it is necessary for conferring resistance to amino acid analogs and for degrading a subset of ubiquitin pathway substrates such as ubiquitin-Pro-beta-galactosidase (Ub-Pro-beta-gal) (van Nocker, S., Sadis, S., Rubin, D.M., Glickman, M., Fu, H., Coux, O., Wefes, I., Finley, D., and Vierstra, R. D. (1996) Mol. Cell. Biol. 16, 6020-28). To further define the role of Mcb1 in substrate recognition by the 26 S proteasome, a structure/function analysis of various deletion and site-directed mutants of yeast and Arabidopsis Mcb1 was performed. From these studies, we identified a single stretch of conserved hydrophobic amino acids (LAM/LALRL/V (ScMcb1 228-234 and At-Mcb1 226-232)) within the C-terminal half of each polypeptide that is necessary for interaction with Lys48-linked multiubiquitin chains. Unexpectedly, this domain was not essential for either Ub-Pro-beta-gal degradation or conferring resistance to amino acid analogs. The domain responsible for these two activities was mapped to a conserved region near the N terminus. Yeast and Arabidopsis Mcb1 derivatives containing an intact multiubiquitin-binding site but missing the N-terminal region failed to promote Ub-Pro-beta-gal degradation and even accentuated the sensitivity of the yeast delta mcb1 strain to amino acid analogs. This hypersensitivity was not caused by a gross defect in 26 S proteasome assembly as mutants missing either the N-terminal domain or the multiubiquitin chain-binding site could still associate with 26 S proteasome and generate a complex indistinguishable in size from that present in wild-type yeast. Together, these data indicate that residues near the N terminus, and not the multiubiquitin chain-binding site, are most critical for Mcb1 function in vivo.  相似文献   

3.
4.
A variety of protease inhibitors have been used to study ubiquitin-dependent proteolysis by the 26 S protease. However, these inhibitors lack complete specificity and thus affect ubiquitin-independent pathways as well. We recently identified an Arabidopsis protein, MBP1, that is homologous to subunit 5a (S5a) of the human 26 S protease complex. MBP1 and S5a bind multiubiquitin chains with high affinity and presumably facilitate the recognition of ubiquitin conjugates by the 26 S protease. We show here that free MBP1 can be a potent inhibitor of ubiquitin-dependent proteolysis in several cell-free systems. When added to reticulocyte lysates or to Xenopus egg extracts, the plant protein effectively blocked the degradation of multiubiquitinated lysozyme and cyclin B, respectively. MBP1 did not enhance the removal of ubiquitin from lysozyme or affect the ability of the 26 S complex to hydrolyze fluorogenic peptides. These data suggest that the plant protein specifically interferes with the recognition of ubiquitin conjugates by the 26 S protease. Thus MBP1, human S5a, and their homologs should prove to be valuable reagents for investigating cellular events mediated by ubiquitin-dependent proteolysis.  相似文献   

5.
Ubiquitin-mediated proteolysis is involved in the turnover of many short-lived regulatory proteins. This pathway leads to the covalent attachment of one or more multiubiquitin chains to target substrates which are then degraded by the 26S multicatalytic proteasome complex. Multiple classes of regulatory enzymes have been identified that mediate either ubiquitin conjugation or ubiquitin deconjugation from target substrates. Timed destruction of cellular regulators by the ubiquitin-proteasome pathway plays a critical role in ensuring normal cellular processes. This review provides multiple examples of key growth regulatory proteins whose levels are regulated by ubiquitin-mediated proteolysis. Pharmacological intervention which alters the half-lives of these cellular proteins may have wide therapeutic potential. Specifically, prevention of p53 ubiquitination (and subsequent degradation) in human papilloma virus positive tumors, and perhaps all tumors retaining wild-type p53 but lacking the retinoblastoma gene function, should lead to programmed cell death. Specific inhibitors of p27 and cyclin B ubiquitination are predicted to be potent antiproliferative agents. Inhibitors of IkappaB ubiquitination should prevent NFkappaB activation and may have utility in a variety of autoimmune and inflammatory conditions. Finally, we present a case for deubiquitination enzymes as novel, potential drug targets.  相似文献   

6.
Degradation of a protein via the ubiquitin system involves two discrete steps, conjugation of ubiquitin to the substrate and degradation of the adduct. Conjugation follows a three-step mechanism. First, ubiquitin is activated by the ubiquitin-activating enzyme, E1. Following activation, one of several E2 enzymes (ubiquitin-carrier proteins or ubiquitin-conjugating enzymes, UBCs) transfers ubiquitin from E1 to the protein substrate that is bound to one of several ubiquitin-protein ligases, E3s. These enzymes catalyze the last step in the process, covalent attachment of ubiquitin to the protein substrate. The binding of the substrate to E3 is specific and implies that E3s play a major role in recognition and selection of proteins for conjugation and subsequent degradation. So far, only a few ligases have been identified, and it is clear that many more have not been discovered yet. Here, we describe a novel ligase that is involved in the conjugation and degradation of non "N-end rule" protein substrates such as actin, troponin T, and MyoD. This substrate specificity suggests that the enzyme may be involved in degradation of muscle proteins. The ligase acts in concert with E2-F1, a previously described non N-end rule UBC. Interestingly, it is also involved in targeting lysozyme, a bona fide N-end substrate that is recognized by E3 alpha and E2-14 kDa. The novel ligase recognizes lysozyme via a signal(s) that is distinct from the N-terminal residue of the protein. Thus, it appears that certain proteins can be targeted via multiple recognition motifs and distinct pairs of conjugating enzymes. We have purified the ligase approximately 200-fold and demonstrated that it is different from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. The native enzyme has an apparent molecular mass of approximately 550 kDa and appears to be a homodimer. Because of its unusual size, we designated this novel ligase E3L (large). E3L contains an -SH group that is essential for its activity. Like several recently described E3 enzymes, including E6-AP and the ligase involved in the processing of p105, the NF-kappa B precursor, the novel ligase is found in mammalian tissues but not in wheat germ.  相似文献   

7.
The 20S proteasome is the proteolytic complex in eukaryotes responsible for degrading short-lived and abnormal intracellular proteins, especially those targeted by ubiquitin conjugation. The 700-kD complex exists as a hollow cylinder comprising four stacked rings with the catalytic sites located in the lumen. The two outer rings and the two inner rings are composed of seven different alpha and beta polypeptides, respectively, giving an alpha7/beta7/beta7/alpha7 symmetric organization. Here we describe the molecular organization of the 20S proteasome from the plant Arabidopsis thaliana. From an analysis of a collection of cDNA and genomic clones, we identified a superfamily of 23 genes encoding all 14 of the Arabidopsis proteasome subunits, designated PAA-PAG and PBA-PBG for Proteasome Alpha and Beta subunits A-G, respectively. Four of the subunits likely are encoded by single genes, and the remaining subunits are encoded by families of at least 2 genes. Expression of the alpha and beta subunit genes appears to be coordinately regulated. Three of the nine Arabidopsis proteasome subunit genes tested, PAC1 (alpha3), PAE1 (alpha5) and PBC2 (beta3), could functionally replace their yeast orthologs, providing the first evidence for cross-species complementation of 20S subunit genes. Taken together, these results demonstrate that the 20S proteasome is structurally and functionally conserved among eukaryotes and suggest that the subunit arrangement of the Arabidopsis 20S proteasome is similar if not identical to that recently determined for the yeast complex.  相似文献   

8.
14-3-3 proteins bind to the hinge 1 region of nitrate reductase (NR) and inhibit its activity. To determine which residues of NR are required for 14-3-3-inhibitory interactions, wild-type and mutant forms of Arabidopsis NR were examined in the yeast two-hybrid system and in vitro inhibition assays. NR fragments with or without hinge 1 were introduced into yeast with one of seven Arabidopsis 14-3-3 isoforms (called GF14s). NR fragments (residues 1-562 or 487-562) containing hinge 1 interacted with all GF-14s tested; an NR fragment (residues 1-487) lacking hinge 1 did not. GF14 binding to NR fragments was dependent on Ser-534, since Asp or Ala substitutions at this site blocked the interaction. Revertants with second site substitutions restoring interaction between GF14omega and the Ala- or Asp-substituted NR fragments were identified. One isolate had a Lys to Glu substitution at position 531, which is in hinge 1, and six isolates had Ile to Leu or Phe substitutions at 561 in the heme binding region. Double mutant forms of holo-NR (S534D plus K531E, I561F, or I561L) were constructed and found to be partially inhibited by protein extracts from Arabidopsis containing 14-3-3 proteins. Wild-type NR is phosphorylated and inhibited by these extracts, but S534D single mutant forms are not. These results show that inhibitory NR/14-3-3 interactions are dependent on Ser-534 but only in the context of the wild-type sequence, since substitutions at second sites render 14-3-3 binding and in vitro NR inhibition independent of Ser-534.  相似文献   

9.
Covalent modification of the Ran GTPase-activating protein RanGAP1 with the ubiquitin-related protein SUMO-1 promotes its association with Nup358, a component of the cytoplasmic fibrils emanating from the nuclear pore complex (1,2). In Xenopus egg extracts, Nup358 can be found in a complex with Ubc9 (3), a structural homologue of the E2-type ubiquitin-conjugating enzymes (UBCs). Here we show that a subset of the human homologue of Ubc9 (HsUbc9) colocalizes with RanGAP1 at the nuclear envelope. HsUbc9 forms thiolester conjugates with recombinant SUMO-1, but not with recombinant ubiquitin, indicating that it is functionally distinct from E2-type UBCs. Finally, HsUbc9 is required for the modification of RanGAP1 by SUMO-1. These results suggest that HsUbc9 is a component of a novel enzymatic cascade that modifies RanGAP1, and possibly other substrates, with SUMO-1.  相似文献   

10.
In budding yeast, ubiquitination of the cyclin-dependent kinase (Cdk) inhibitor Sic1 is catalyzed by the E2 ubiquitin conjugating enzyme Cdc34 in conjunction with an E3 ubiquitin ligase complex composed of Skp1, Cdc53 and the F-box protein, Cdc4 (the SCFCdc4 complex). Skp1 binds a motif called the F-box and in turn F-box proteins appear to recruit specific substrates for ubiquitination. We find that Skp1 interacts with Cdc53 in vivo, and that Skp1 bridges Cdc53 to three different F-box proteins, Cdc4, Met30, and Grr1. Cdc53 contains independent binding sites for Cdc34 and Skp1 suggesting it functions as a scaffold protein within an E2/E3 core complex. F-box proteins show remarkable functional specificity in vivo: Cdc4 is specific for degradation of Sic1, Grr1 is specific for degradation of the G1 cyclin Cln2, and Met30 is specific for repression of methionine biosynthesis genes. In contrast, the Cdc34-Cdc53-Skp1 E2/E3 core complex is required for all three functions. Combinatorial control of SCF complexes may provide a basis for the regulation of diverse cellular processes.  相似文献   

11.
p62 is a novel cellular protein which was initially identified as a phosphotyrosine-independent ligand of the SH2 domain of p56(lck). In the yeast two-hybrid system, p62 specifically interacted with ubiquitin in vivo. Furthermore, p62 bound to ubiquitin-conjugated Sepharose beads in vitro and was efficiently competed by soluble ubiquitin. The interaction was independent of ATP hydrolysis, and its dissociation did not require a reducing agent. Thus, p62 binds to ubiquitin noncovalently. Further analysis showed that the C-terminal 80 amino acids of p62 were indispensable for its interaction with ubiquitin. However, p62 has homology neither with ubiquitin C-terminal hydrolases nor with the S5a subunit of the 26 S proteasome complex, the only proteins known to bind to ubiquitin noncovalently. These results suggest that p62 belongs to a new class of ubiquitin-binding proteins and that p62 affects signal transduction at least partly through ubiquitination-mediated protein degradation.  相似文献   

12.
13.
Functional p53 protein is associated with the ability of cells to arrest in G1 after DNA damage. The E6 protein of cancer-associated human papillomavirus type 16 (HPV-16) binds to p53 and targets its degradation through the ubiquitin pathway. To determine whether the ability of E6 to interact with p53 leads to a disruption of cell cycle control, mutated E6 proteins were tested for p53 binding and p53 degradation targeting in vitro, the ability to reduce intracellular p53 levels in vivo, and the ability to abrogate actinomycin D-induced growth arrest in human keratinocytes. Mutations scattered throughout the amino terminus, either zinc finger or the central region but not the carboxy terminus, severely reduced the ability of E6 to interact with p53. Expression of HPV-16 E6 or mutated E6 proteins that bound and targeted p53 for degradation in vitro sharply reduced the level of intracellular p53 induced by actinomycin D in human keratinocytes. A perfect correlation between the ability of E6 proteins to reduce the level of intracellular p53 and their ability to block actinomycin D-induced cellular growth arrest was observed. These results suggest that interaction with p53 is important for the ability of HPV E6 proteins to circumvent growth arrest.  相似文献   

14.
The conserved region 3 (CR3) of the E7 protein of human papillomaviruses contains two CXXC motifs involved in zinc binding and in the homodimerization of the molecule. Studies have suggested that the intact CXXC motifs in the CR3 of HPV16 and HPV18 E7 are required for the in vitro transforming activity of these proteins. CR3 also contains a low affinity pRb binding site and is involved in the disruption of the E2F/Rb1 complex. E7 is structurally and functionally related to Adenovirus E1A protein, which also has two CXXC motifs in CR3. However, the Ad E1A transforming activity appears to be independent of the presence of such domains. In fact, this viral protein exists in vivo as two different forms of 289 and 243 amino acids. The shorter Ad E1A form (Ad E1A243), where both CXXC motifs are deleted by internal splicing, retains its in vitro transforming activity. We have investigated if the HPV16 E7 CR3 can be functionally replaced by the Ad E1A243 CR3, which lacks both CXXC motifs. A chimeric protein (E7/E1A243) containing the CR1 and CR2 of HPV16 E7 fused to the CR3 of Ad E1A 243 was constructed. The E7/E1A243 while not able to homodimerize in the S. cerevisiae two-hybrid system retains several of the properties of the parental proteins, HPV16 E7 and Ad E1A. It associates with the 'pocket' proteins, induces growth in soft agar of NIH3T3 cells and immortalizes rat embryo fibroblasts. These data suggest that the CXXC motifs in CR3 of E7 do not play a direct role in the transforming properties of this viral protein but probably are important for maintaining the correct protein configuration.  相似文献   

15.
The wild-type tumor suppressor protein p53 is a short-lived protein that plays important roles in regulation of cell cycle, differentiation, and survival. Mutations that inactivate or alter the tumor suppressor activity of the protein seem to be the most common genetic change in human cancer and are frequently associated with changes in its stability. The ubiquitin system has been implicated in the degradation of p53 both in vivo and in vitro. A mutant cell line that harbors a thermolabile ubiquitin-activating enzyme, E1, fails to degrade p53 at the nonpermissive temperature. Studies in cell-free extracts have shown that covalent attachment of ubiquitin to the protein requires the three conjugating enzymes: E1, a novel species of ubiquitin-carrier protein (ubiquitin-conjugating enzyme; UBC),E2-F1, and an ubiquitin-protein ligase, E3. Recognition of p53 by the ligase is facilitated by formation of a complex between the protein and the human papillomavirus (HPV) oncoprotein E6. Therefore, the ligase has been designated E6-associated protein (E6-AP). However, these in vitro studies have not demonstrated that the conjugates serve as essential intermediates in the proteolytic process. In fact, in many cases, conjugation of ubiquitin to the target protein does not signal its degradation. Thus, it is essential to demonstrate that p53-ubiquitin adducts serve as essential proteolytic intermediates and are recognized and degraded by the 26S protease complex, the proteolytic arm of the ubiquitin pathway. In this study, we demonstrate that conjugates of p53 generated in the presence of purified, E1, E2, E6-AP, E6, ubiquitin and ATP, are specifically recognized by the 26S protease complex and degraded. In contrast, unconjugated p53 remains stable. The ability to reconstitute the system from purified components will enable detailed analysis of the recognition process and the structural motifs involved in targeting the protein for degradation.  相似文献   

16.
17.
A new method has been developed to detect mono-S-substituted cysteinyl adducts of 1,2- and 1,4-benzoquinone (BQ) in hemoglobin (Hb) and albumin (Alb). After reacting the protein with trifluoroacetic anhydride and methanesulfonic acid, the resulting isomers of O,O',S-tris-trifluoroacetyl-hydroquinone and -catechol are extracted and detected by gas-chromatography-mass spectrometry in the negative-ion chemical ionization mode. The limit of detection of the assay is about 20 pmol adduct/g protein. This assay was employed to quantitate mono-S-substituted background adducts in human and rat Hb and Alb and benzene-specific adducts in Hb and Alb from F344 rats following a single oral dosage of 50-400 mg [13C6]benzene/kg body wt. In Alb, a dose-related increase in both [13C6]1,2- and [13C6]1,4-BQ adducts was observed with [[13C6]]1,4-BQ-Alb] > [[13C6]1,2-BQ-Alb]. The formation of [13C6]1,2-BQ-Alb was linear with increasing dosage of benzene with a slope of 2.3 (pmol adduct/g protein)/(mg/kg body wt.) (S.E. = 0.18, R2 = 0.91). However, at dosages above about 100 mg [13C6]benzene/kg body wt., the levels of 1,4-BQ-Alb were greater than proportional to the dosage. Mono-S-substituted adducts of [13C6]1,2-BQ and [13C6]1,4-BQ were not detected in Hb. The background ([12C6]) adducts of 1,2- and 1,4-BQ in 20 F344 rats were estimated (in nmol adduct/g of protein) to be 3.9 (S.E. = 0.23) and 4.9 (S.E. = 0.30) in Hb and 2.7 (S.E. = 0.24) and 11.4 (S.E. = 0.60) in Alb. At the highest dosage of 400 mg [13C6]benzene/kg body wt., background levels of 1,2-BQ-Alb were about 4-fold higher than those of the benzene-specific adducts whereas the benzene-specific levels of 1,4-BQ-Alb were about 7-fold higher than those of the background adducts. Background levels of 1,2- and 1,4-BQ adducts in 10 portions of commercial human proteins were found to be (in nmol adduct/g of protein) 1.6 (S.E. = 0.05) and 0.85 (S.E. = 0.04) in Hb and 1.6 (S.E. = 0.06) and 8.9 (S.E. = 0.36) in Alb.  相似文献   

18.
Although cell differentiation usually involves synthesis of new proteins, little is known about the role of protein degradation. In eukaryotes, conjugation to ubiquitin polymers often targets a protein for destruction. This process is regulated by deubiquitinating enzymes, which can disassemble ubiquitin polymers or ubiquitin-substrate conjugates. We find that a deubiquitinating enzyme, UbpA, is required for Dictyostelium development. ubpA cells have normal protein profiles on gels, grow normally, and show normal responses to starvation such as differentiation and secretion of conditioned medium factor. However, ubpA cells have defective aggregation, chemotaxis, cAMP relay, and cell adhesion. These defects result from low expression of cAMP pulse-induced genes such as those encoding the cAR1 cAMP receptor, phosphodiesterase, and the gp80 adhesion protein. Treatment of ubpA cells with pulses of exogenous cAMP allows them to aggregate and express these genes like wild-type cells, but they still fail to develop fruiting bodies. Unlike wild type, ubpA cells accumulate ubiquitin-containing species that comigrate with ubiquitin polymers, suggesting a defect in polyubiquitin metabolism. UbpA has sequence similarity with yeast Ubp14, which disassembles free ubiquitin chains. Yeast ubp14 cells have a defect in proteolysis, due to excess ubiquitin chains competing for substrate binding to proteasomes. Cross-species complementation and enzyme specificity assays indicate that UbpA and Ubp14 are functional homologs. We suggest that specific developmental transitions in Dictyostelium require the degradation of specific proteins and that this process in turn requires the disassembly of polyubiquitin chains by UbpA.  相似文献   

19.
Several proteins with significant identity to ubiquitin have been characterized recently. In contrast to ubiquitin's main role in targeting proteins for degradation, a described function of one family of ubiquitin-related proteins, the Rub family, is to serve as a stable post-translational modification of a complex involved in the G1-to-S cell cycle transition. Rub proteins have been found in animals, plants, and fungi and consist of 76 residues with 52-63% identity to ubiquitin. In this study three different RUB proteins within the plant Arabidopsis are identified; two differ by only 1 amino acid, while the third is only 77.6% identical to the other two. Genes encoding all three are expressed in multiple organs. In addition, we report the crystal structure of higher plant RUB1 at 1.7-A resolution to help elucidate the functional differences between Rub and ubiquitin. RUB1 contains a single globular domain with a flexible COOH-terminal extension. The overall RUB1 structure is very similar to ubiquitin. The majority of the amino acid differences between RUB1 and ubiquitin map to the surface. These changes alter the electrostatic surface potential in two regions and likely confer specificity between ubiquitin and RUB1 and their ubiquitin-activating enzyme (E1) or E1-like activating enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号