首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exciton enhancement effect on the third-order optical nonlinearities of a ZnS/CdSe quantum dot quantum well (QDQW) has been theoretically studied. The wave functions and eigenenergies of excitons in QDQW have been calculated under the effective-mass approximation. By solving a three-dimensional nonlinear Schrödinger equation and by means of compact density matrix method, the third-order nonlinear susceptibilities for third-harmonic generation (THG) have been calculated in a two energy levels model of QDQW. Firstly, we studied the size effect on THG in QDQW. Then we compared the value of THG with the case that only considering electron states. The results show that the THG is greatly enhanced when compared with the condition just considering electron states.  相似文献   

2.
The effect of the electron-phonon interaction on the third-harmonic is investigated theoretically for electrons confined in a core-shell quantum dot. The interactions of electrons with different phonon modes in the core-shell system, including the confined longitudinal optical (LO) and the interface optical (IO) phonon modes, are investigated. We carried a detailed calculation of third-harmonic generation (THG) process on a ZnS/CdSe core-shell quantum dot as a function of pump photon energy with different incident photon energy and under different sizes. The results reveal that the polaron effects are quite important especially around the peak value of the third-order susceptibility. By increasing the size of the quantum dots, the peaks of χTHG(3) will shift to lower energy, and the intensities of the peaks will increase.  相似文献   

3.
提出了一种半导体量子点CdSe/ZnS掺杂聚合物光纤放大器。测量了CdSe/ZnS量子点吸收和发射光谱,采用二能级结构和速率方程的方法,全面描述了CdSe/ZnS量子点掺杂聚合物光纤放大器的增益性能。计算了放大器增益随量子点掺杂光纤长度、量子点掺杂浓度和信号光强度的变化,给出了不同泵浦光强条件下的增益谱线及半高全宽。结果表明,在mW量级的泵浦条件下,CdSe/ZnS量子点掺杂聚合物光纤放大器可获得35dB以上的增益,获得相同增益所需泵浦光强度只有同类型染料掺杂聚合物光纤放大器的万分之一。泵浦光强与量子点掺杂浓度之间存在最佳对应关系,单位泵浦功率激发的最佳量子点数为6.33×107/mW。在室温下,CdSe/ZnS量子点掺杂聚合物光纤放大器具有550nm~610nm的带宽,含盖了聚合物光纤的低损窗口。  相似文献   

4.
The energy eigenvalues and eigenfunctions have been obtained for a core-shell CdSe/ZnS quantum dot structure under effective-mass approximation. The electric transition dipole moment is calculated for the 1s-2s electronic transition. The optical nutation signal of the transition of electrons has been calculated numerically based on optical Bloch equations. Particularly, we have investigated the quantum size, the core's radius and the shell's thickness, dependent optical nutation. It is shown from calculation results that the optical nutation signal is sensitive to the size and structure change. And the reasons for the variation of the Rabi frequency have been discussed based on the theory of the quantum size confined effect (QSCE).  相似文献   

5.
The possibility of fabricating a composite system based on colloidal CdSe/ZnS quantum dots and GaAs nanowires is demonstrated and the structural and emission properties of this system are investigated by electron microscopy and photoluminescence spectroscopy techniques. The good wettability and developed surface of the nanowire array lead to an increase in the surface density of quantum dots and, as a consequence, in the luminosity of the system in the 600-nm wavelength region. The photoluminescence spectrum of the quantum dots exhibits good temperature stability in the entire range 10–295 K. The impact of surface states on energy relaxation and the role of exciton states in radiative recombination in the quantum dots are discussed.  相似文献   

6.
We have investigated the properties of neutral and charged excitons in single CdSe/ZnSe QD photodiodes by μ-photoluminescence spectroscopy. By applying a bias voltage, we have been able to control the number of electrons in a single QD by shifting the energy levels of the QD with respect to the Fermi level in the back contact. Also the quantum-confined Stark effect was observed as a function of the applied electric field.  相似文献   

7.
In this article X-ray radiation sensitivity of ZnS thin film prepared by a chemical bath deposition technique has been reported. The films were prepared under 0.10, 0.15 and 0.20 molarity (M). Characterization reports show that the 0.20 M film has the best quality than the other low molarity films. I-V characteristics of the films were studied under dark condition and observed that the film prepared at 0.20 M has an electrical conductivity of 2.06×10−6 cm)−1 which is about 10 times greater than the other lower molarity films. Further, the I-V characteristic of this film has studied under UV and X-ray radiations. The current under X-ray radiation is found to be significantly higher than that under the UV radiation. At a fix bias voltage of 1.0 V, the conductivity under UV radiation is found to be 3.26×10−6 cm)−1 whereas that under the X-ray is 4.13×10−5 cm)−1. The sensitivity under X-ray radiation is significantly greater than that under the UV radiation. This analysis suggests that the ZnS thin film which is used as a UV radiation sensor can also be used as a potential X-ray radiation sensor.  相似文献   

8.
A scheme for an optical quantum external-electric-field sensor based on a double quantum dot placed in a high-Q semiconductor microcavity is proposed. A model of the dynamic processes occurring in this system is developed, its spectral characteristics are investigated, and the noise stability of the sensor is examined. It is demonstrated that, owing to design features, the device has a number of advantages, including high sensitivity, the presence of different excitation and measurement channels, and the possibility of accurate determination of the spatial field distribution.  相似文献   

9.
Periodic disposed quantum dot arrays are very useful for the large scale integration of single electron devices. Gold quantum dot arrays were self-assembled inside pore channels of ordered amino-functionalized mesoporous silica thin films, employing the neutralization reaction between chloroauric acid and amino groups. The diameters of quantum dots are controlled via changing the aperture of pore channels from 2.3 to 8.3 nm, which are characterized by HRTEM, SEM and FT-IR. UV-vis absorption spectra of gold nanoparticle/mesoporous silica composite thin films exhibit a blue shift and intensity drop of the absorption peak as the aperture of mesopores decreases, which represents the energy level change of quantum dot arrays due to the quantum size effect.  相似文献   

10.
The effect of the photonic band gap in the photonic crystal, the synthesized SiO2 opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and the luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.  相似文献   

11.
纳米薄膜与光纤的结合为新型感测提供了各种潜在可能.为了分析温度敏感薄膜的膜系设计及其对光纤温度传感器传感特性的影响,根据光学薄膜理论和光纤传感器的温度感测原理,探讨了光纤温度传感器中敏感薄膜的膜系设计,并构建了薄膜型光纤传感器的温度传感特性模型.以测试系统的参数、性能以及其对干涉光谱的要求为基础,设计了对称性较好的法布...  相似文献   

12.
An air‐stable, low‐toxicity, single‐molecular source for ZnS is demonstrated to be an appropriate reagent to synthesize highly luminescent ZnS‐capped CdSe with a narrow size distribution. A photoluminescence quantum yield of above 50 % and a photoluminescence peak full width at half maximum of around 32 nm could be obtained after synthesis using a microreactor. The surface of the ZnS‐capped CdSe nanocrystals can be hydrophilic, while retaining the high quantum yield. Microscopic observation shows that accurate time control, which could be achieved by using a microreactor, is important to avoid the formation of many isolated ZnS particles and the deterioration of the luminescence.  相似文献   

13.
利用热注入法合成带有油酸配体的PbS量子点, 用短链乙醇胺替代长链油酸做为PbS量 子点的配体。 对比了由两种材料制得的量子点薄膜与Al形成的肖特基结的J-V特性,采用热 电子发射理论对其J-V特 性进行分析,结果发现,接有短链乙醇胺的PbS量子点薄膜具有更优的整流特 性,理想因子n为3.8,明显低 于采用油酸配体的PbS量子点(n=4.6)。 研究表明,短链配体有利于提高PbS薄膜表面的均匀性并形成较好的肖 特基接触;短链置换过程提高了量子点薄膜与Al电极的接触势垒高度,使肖特基结反向 漏电流降低。  相似文献   

14.
The pH sensors using protein-mediated CdSe/ZnS quantum dots in an electrolyte-insulator-semiconductor (EIS) structure have been investigated. The hydrophobic cylindrical cavity of the chaperonin (GroEL) protein template was used to trap CdSe/ZnS quantum dots on hydrophobically treated SiO2 surface. The CdSe/ZnS quantum dot with a small diameter of 3.98 nm is observed by atomic force microscope. A fair pH response with a sensitivity of 39 mV/pH and a linearity of 99.48% are obtained by using CdSe/ZnS quantum dot based EIS sensor, while those values are found to be 53 mV/pH and 99.95% for bare SiO2 based EIS pH sensors. The pH response and linearity of CdSe/ZnS based quantum dot sensors are inferior (slightly) as compared to the bare SiO2 sensors owing to the initial negative charges of CdSe quantum dots membrane, which has been explained by energy band diagrams. It is expected that this kind of quantum dot membrane can be useful in future bio-molecule detections.  相似文献   

15.
《Microelectronics Journal》2007,38(6-7):700-705
Photoluminescence (PL) of CdSe/ZnS quantum dots (QDs) deposited on Si, fused silica, Au film, shows red-shift; and blue-shift whenever two peaks are present, particularly on silica nanospheres. The red-shift with increasing density of QDs is attributed to interaction between QDs with PL emerging from the lower bonding state, and the second peak is attributed to molecular complexes on the surface of QD interacting with its surrounding matrices. The second peak is too weak to be detected on Si wafer with native oxide. The couplings between QD/QD and QDs/silica spheres via the molecular complexes are explained with a simple model. We also demonstrate that the band-gap of photonic crystals consisting of silica spheres can be stabilized by dehydration, annealing at high temperatures up to 1000 °C.  相似文献   

16.
We report enhanced color purity of hybrid organic-inorganic light emitting diode based on polyfluorene-CdSe/ZnS quanum dot (QD) blend as emissive layer. Effect on structural, optical and electrical properties of different doping concentration (0–100 wt.%) of QD in polyfluorene (PFO) was studied. Photoluminescence and electroluminescence spectra confirm the β-formation of PFO by incorporation of CdSe/ZnS QD. Photoluminescence (PL) of blend film was also compared with another method based on one dimensional photonic band gap (1D-PBG) structure that has been used for color purity. In both the cases, that is, QD doped device and 1D-PBG based structures the narrowing of PL spectra was observed. But the fabrication of QD-doped device for color purity is easier than fabricating 1D-PBG structure using multilayer dielectric coating. The present study might find application for QD based color displays, where color purity is an important requirement.  相似文献   

17.
本文设计了一种可用于现场检测的痕量Cu2+传感器,运用自行研制的光学感知与信号处理模块实现痕量Cu2+的快速检测,达到了检测仪器的低成本、小型化的目的.实验结果表明,在Cu2+浓度50-1000nmol/L范围内传感器检测结果具有较好的线性关系,拟合后的直线方程为Y=0.11869* X+ 14.47268,线性度为0.99358,标准方差为4.63099,传感器响应时间为50秒,检测的可重复性较好,该传感器可以满足痕量Cu2+现场检测的需求.  相似文献   

18.
The photoluminescence and photoluminescence excitation spectra, the X-ray diffraction patterns, and the effect of conjugation with biomolecules upon these characteristics are studied for silanized CdSe/ZnS quantum dots. Along with the band of annihilating excitons in the quantum dots, the luminescence spectra exhibit emission associated with defects. It is established that the emission spectrum of defects involves at least two components. It is shown that the defects are located mainly at the small-sized quantum dots; the defects responsible for the long-wavelength component are located mainly at the quantum dots larger in size than the quantum dots, at which the defects responsible for the short-wavelength component are located. It is found that conjugation with biomolecules induces not only the blue shift of the excitonic band, but transformation of the emission spectra of defects and an increase in the contribution of defects to the luminescence spectrum as well. The changes observed in the emission spectrum of defects are attributed to the formation of certain emission centers. It is shown that, when conjugated with biomolecules, the quantum dots experience increasing compression strains. This effect is responsible for the blue shift of the luminescence band of the quantum dots.  相似文献   

19.
采用电子束蒸发、射频磁控溅射、等离子喷涂等方法,在镍基高温合金基底上制备YSZ(质量分数12%Y2O3稳定的Zr O2)、Al2O3复合薄膜结构绝缘层,并研究了复合薄膜结构绝缘层在室温到800℃范围内的绝缘特性,以及高温对复合薄膜晶体结构和表面形貌的影响。结果表明:晶态YSZ/非晶态YSZ/Al2O3结构绝缘层在室温下的绝缘电阻大于1.2 GΩ,在800℃大气环境下有150 kΩ左右的绝缘电阻。在室温到800℃范围内,随温度升高其绝缘电阻呈近指数下降的变化规律。经过在800℃大气环境中热处理8 h,YSZ的立方相结构未发生改变,Al2O3表面十分致密,表明该复合结构绝缘层薄膜具有良好的高温绝缘性能和稳定性。  相似文献   

20.
采用CdSe/ZnS红光量子点(QD),利用旋涂和真 空蒸镀工艺制备了结构为ITO/TPD+PVK/QDs/Alq3/LiF/Al的量 子点发光器件(QD-LED),并对器件的发光性能做了测试。研究了ITO表面处理、TPD空穴 传输层和QD发光层的厚 度对QD-LED性能的影响,并通过调整QD发光层和Alq3电子传输层的 厚度,制备了可用于照明 的白光QD-LED。实验结果表明,ITO的表面处理可有效降低器件的开启电压,开启 电压从9V降到7V左右; TPD空穴传输层和QD发光层的厚度对器件的电流密度和发光亮度有较大的影响,而Alq3电 子传输层和QD发光层 的合理配比可以混合出较高色温的白光。通过优化器件各参数,当TPD和PVK质量比为5∶1、QD度为1.0mg/ml和 Alq3厚为60nm时,制备的器件在15V电压 时发光效率达到了1500c d/m2,色坐标为(0.3628,0.3796) ,显色指数为88.1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号