首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous theoretical studies have shown that dayside chorus can produce butterfly distribution of energetic electrons in the Earth’s radiation belts by preferentially accelerating medium pitch angle electrons, but this requires the further confirmation from high-resolution satellite observation. Here, we report correlated Van Allen Probes data on wave and particle during the 11–13 April, 2014 geomagnetic storm. We find that a butterfly pitch angle distribution of relativistic electrons is formed around the location L = 4.52, corresponding to the presence of enhanced dayside chorus. Using a Gaussian distribution fit to the observed chorus spectra, we calculate the bounce-averaged diffusion rates and solve two-dimensional Fokker-Planck equation. Numerical results demonstrate that acceleration by dayside chorus can yield the electron flux evolution both in the energy and butterfly pitch angle distribution comparable to the observation, providing a further evidence for the formation of butterfly distribution of relativistic electrons driven by very low frequency (VLF) plasma waves.  相似文献   

2.
Taking advantage of high time-resolution (1 s) geomagnetic field measurements obtained at low-latitude stations, we investigated frequency differences of Pi2 pulsations between the dayside and the nightside. Firstly, we examined two Pi2 cases globally observed by multiple ground stations and found that the dominant frequency peaks at the dayside showed latitudinal dependence, i.e., the higher (lower) frequency peak was predominant at lower (higher) latitude. We also noticed that the dominant Pi2 frequency on the nightside was apparently higher than that on the dayside. We argue that the multiple frequency peaks observed on the ground are harmonics of a plasmaspheric cavity resonance mode (CRM) and that the latitudinal dependence of the dominant frequency peaks may result from the energy coupling between the CRM and field line resonance (FLR) occurred in the near Earth space. We also argue that the frequency difference between the dayside and the nightside could be caused by the reason that a higher harmonic was observed in the nightside plasmasphere but was not effectively observed in the dayside. In addition, we statistically examined 829 Pi2 events that were simultaneously recorded at Kakioka (KAK, Maglat=27.2°) and Jicamarca (JIC, Maglat=0.0°), the two stations separated by ~10 h in local time (LT) and one of them (JIC) is located at the dip equator. We found that the Pi2 frequency observed at KAK on the nightside was higher than that observed at JIC on the dayside on average. After investigating the occurrence histogram of the frequency difference (Δf=f JIC?f KAK) for the events simultaneously observed at KAK and JIC, we found that close to half of the events had the identical frequency (|Δf|<1.0 mHz). The statistical results are consistent with the facts reflected by case studies.  相似文献   

3.
We study the field-aligned propagating magnetospheric chorus wave instability using a fully relativistic wave growth formula,the previously developed relativistic Kappa-type(KT) distribution and the regular Kappa distribution of energetic electrons.We demonstrate that the peak growth rate using the nonrelativistic Kappa simulation is higher than that using either the relativistic KT or the Kappa simulation at/above 100 keV, because the significant relativistic effect yields a reduction in the relativistic anisotropy. The relativistic anisotropy Arel basically decreases as the thermal parameter θ2 increases, allowing the peak growth by relativistic KT or Kappa distribution to stay at the lower frequency region. The growth rates tend to increase with the loss-cone parameter l because the overall anisotropy increases. Moreover, at high energy ~1.0 MeV, both the growth rate and the upper cutoff frequency become smaller as l increases for the relativistic KT calculation because the significant relativistic effect reduces both the resonant anisotropy and the number of the hot electrons, which is in contrast to the relativistic and nonrelativistic Kappa distribution calculations because the less relativistic or non-relativistic effect enhances the resonant anisotropy as l increases. The above results can be applied to the whistler-mode wave instability in the outer radiation belts of the Earth, the Jovian inner magnetosphere and other astrophysical plasmas where relativistic electrons often exist.  相似文献   

4.
An event of Cluster-Double Star conjunction observations of magnetic reconnection at high latitude magnetopause nightside of both cusps and solar wind transport into magnetosphere caused by such reconnection process has been investigated. During northward IMF, Cluster/SC1 observed accelerated flows and ion heating associated with magnetic reconnection at high latitude magnetopause nightside of southern cusp. And Double Star observed cold dense solar wind plasma transported into dayside magnetosphere. The analysis on such conjunction observations shows that: (1) during northward IMF, magnetic reconnection occurs at high latitude nightside of southern cusp, accompanied by accelerated flows that are observed by Cluster/SC1; (2) the direction of the accelerated flows, with its sunward component V x , dawnward component V y , northward component V z , is quite consistent with the theoretical anticipation under the condition of northward IMF with dawnward component B y ; (3) reconnection can heat plasma more in parallel direction than in perpendicular direction, to a level of about 4 keV; (4) with reconnection taking place at high latitude magnetopause nightside of the southern cusp, TC-1 observed cold and dense plasma transported into magnetosphere; (5) by reconnection at high latitude magnetopause nightside of both cusps, solar wind flux tube can be captured by magnetosphere and pulled into dayside magnetosphere. This event presents further observational evidence for magnetic reconnection at high latitude magnetopause nightside of both cusps as an important mechanism of solar wind transport into magnetosphere. Supported by the Ministry of Science and Technology of China (Grant No. 2006CB806305), the National Natural Science Foundation of China (Grant Nos. 40621003, 40674094), and the Hundred Talents Program of the CAS  相似文献   

5.
The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co^2+/Co^3+ redox couple on glassy carbon electrode in [bmim]PF6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10^-11m^2/s) of Co^2+ in [bmim]PF6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co^2+ in [bmim]PF6 is also calculated to be 23.4 kJ/mol according to the relationship between diffusion coefficient and temperature.  相似文献   

6.
The diffusion process of hydrogen in aluminum melts was investigated by molecular dynamics simulation. The pair correlation function, first peak position, and coordination number was calculated and differences in the structural properties among Al-H, Cl-H, and Al-Cl pair were examined. The mechanism of chlorine on improving hydrogen diffusion was discussed. From an ab initio molecular dynamics calculations, the diffusivity of hydrogen in liquid aluminum as D(T)=(0.118×10-4 m2/s)exp(-0.316 eV/kT) is obtained, which is in good agreement with the experimental data. Correspondingly the diffusivity with presence of chlorine is promoted as D(T)=(0.09×10-4 m2/s)exp(-0.251 eV/kT). It can be concluded that the diffusion of hydrogen in aluminum melts can be enhanced in the presence of chlorine.  相似文献   

7.
The equatorial and polar satellites of the Double Star Project (DSP) were launched successfully on December 29, 2003 and July 25, 2004, respectively, and both of them are operating smoothly. The DSP provides a good opportunity for investigating the structure of the magnetosphere. Based on the DSP data collected during 2004, we have surveyed the distribution of the magnetic fields and plasmas in the magnetosphere. It is found that: (1) Near the Earth’s equatorial plane within geocentric distances of less than 7 RE, the Earth’s magnetic field is dipolar. In the vicinity of the magnetopause, the magnetic field is enhanced by a factor of about 1.5, and on the nightside, the magnetic field can vary significantly from the Earth’s dipole field, likely caused by the presence of the near-Earth tail current sheet. (2) In the day-side magnetosheath, the electron and ion densities are usually both in the range of 10–30 cm−3; the ion and electron temperatures are usually about 200 and 50 eV, respectively. The flow pattern is usually smooth, with a low velocity in the subsolar region and with significantly higher velocities in the dawn and dusk flanks. (3) In the region between the magnetopause and plasmasphere the density is low, approximately 0.5–5 cm−3, and the temperature is high, about 1–10 keV for ions and 0.1–5 keV for electrons. The ion temperature has an apparent anisotropy, with the ratio of the perpendicular and parallel temperatures being about 1.0–1.3 for the night-and dusk-side magnetosphere and about 1.3–2.0 for the day-and dawn-side magnetosphere. There is an evident sunward convection of about 50 km/s in the magnetosphere. On the dawn side, the flow becomes somewhat turbulent, and in the vicinity of the night-noon meridian plane, the convection is rather slow. (4) The high-energy electrons with energies higher than 2 MeV are mainly located in the regions with 3 < L < 4.5; the size of the high-energy electrons area varies with time, it may expand and shrink occasionally according to different solar wind conditions and magnetic activities. Supported by the National Natural Science Foundation of China (Grant Nos. 40621003, 40728005, 40674094, and 40390150), Ministry of Science and Technology of China (Grant No. 2006CB806305), and Hundred Talents Program of the CAS  相似文献   

8.
本文采用蒙特卡罗程序EGS5计算了10 keV~10 MeV光子注量到周围剂量当量的转换系数。模拟计算中考虑了两种情况:1)不带次级电子模拟;2)带次级电子模拟。把两种情况下的计算值与前研究者的计算值及ICRP 74号报告中的建议值进行了比较。并给出了用于计算光子注量与周围剂量当量间的转换系数的拟合公式。  相似文献   

9.
High energy electron is a kind of sources to be detected in the geospace environment. Generally, the particle telescope with much thick semiconductor detector is used as the sensor for energetic electrons because they can penetrate deeply into the detector. The more energy of the electrons is, the deeper they can penetrate into, so that the geometric factor varies with energy of the incident electrons. We discuss the geometric factor of particle radiation detector (PRD), which is a payload on ZY-1 (CBERS-1 and CBERS-2) satellites to monitor the high energy particle radiation inside the satellites. According to the NASA’s AE8 model, the geometric factors of electrons for the low energy bin (0.5–1.0 MeV) and the high energy bin (> 2.0 MeV) are 2.468 and 1.736 cm2·sr, respectively. These results are much different from the traditional calculation of the geometric factor that is 1.18 cm2·sr. The angle-response function of the telescope is also derived, which can be useful for design of the telescope and analysis of the directional distribution. Supported by the National Natural Science Foundation of China (Grant No. 40674097) and Co-constructing Foundation of Beijing Municipal Commission of Education (Grant No. XK100010404)  相似文献   

10.
The crystallization kinetics of 38.0CaO-38.0Al2O3-10.5BaO-6.5MgO-6.0Y2O3-1.0(Na2O+K2O) (wt%) glass was studied by differential scanning calorimeter (DSC) and X-ray diffraction (XRD) techniques. The results showed that DSC curves of calcium aluminate glass have a single glass transition temperature followed by one crystallization peak for the heating rates β = 5 K/min and two crystallization temperatures T p1 and T p2 for β ≥ 10 K/min. The activation energies of crystallization obtained from the Gao-Wang model of the first exothermal peak and the second exothermal peak of calcium aluminate glass are 340 and 662 kJ/mol, respectively. The Avrami exponents of the both crystallization peaks are approximately 2, indicating the twodimensional crystalline growth during its transformation from amorphous to crystalline. Ca12Al14O33, Ca3Al2O6 and unknown crystalline phases firstly appear when calcium aluminate glass is heat-treated. With the extending of heat-treatment duration, BaAl2O4 phase comes out.  相似文献   

11.
The size distribution of the broken top coal blocks is an important factor, affecting the recovery ratio and the efficiency of drawing top coal in longwall top coal caving(LTCC) mining panel. The standard deviation of top coal block size(dt) is one of the main parameters to reflect the size distribution of top coal. To find the effect of dton the caving mechanism, this study simulates experiments with 9 different dtby using discrete element software PFC. The dtis divided into two stages: uniform distribution stage(UDS) whose dtis less than 0.1(Schemes 1–5), and nonuniform distribution stage(NDS) whose dtis more than 0.1(Schemes 6–9). This research mainly investigates the variation of recovery ratio, drawing body shape,boundary of top coal, and contact force between particles in the two stages, respectively. The results showed that with the increasing dt, the recovery ratio of the panel increases first and then decreases in UDS. It is the largest in Scheme 3, which mainly increases the drawing volume at the side of starting drawing end. However, the recovery ratio decreases first and then increases quickly in NDS, and it is the largest in Scheme 9, where the drawing volume at the side of finishing drawing end are relatively higher. In UDS, the major size of top coal is basically medium, while in NDS, the size varies from medium to small, and then to large, with a distinct difference in shape and volume of the drawing body. When the major size of top coal is medium and small, the cross-section width of the initial boundary of top coal at each height is relatively small. Conversely, when the top coal size is large, the initial boundary of top coal has a larger opening range, the rotating angle of lower boundary is relatively small in the normal drawing stage, which is conducive to the development of drawing body and reduces the residual top coal, and the maximum particle velocity and the particles movement angle are both larger. This study lays a foundation for the prediction of recovery ratio, and suggests that the uniform top coal is more manageable and has a larger recovery ratio.  相似文献   

12.
Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE), and their properties of structure and resistivity with varying N2 pressure were investigated. The results showed that atomically flat TiN films with layer-by-layer growth mode were successfully grown on Si(100) substrates, and (200) was the preferred orientation. With the increasing of N2 pressure, the N/Ti ratio gradually increased and the diffraction peak progressively shifted towards lower diffraction angle. At pressure of 0.1 Pa, stoichiometric TiN film was formed which exhibited the characteristic diffraction angle of (200) plane. All films showed high reflectance to infrared spectrum and the films with overstoichiometry and understoichiometry had a higher resistivity owing to the surface particles and lattice distortion, while the stoichiometric TiN film depicted the minimum resistivity, around 19 μΩ·cm.  相似文献   

13.
The SO_4~(2-)concentration distributions in surface region of cement mortar immersed in sulfate solution at early stage were measured by layered sampling method combined with chemical analysis, and the diffusion coefficients of SO_4~(2-)anions in surface region of mortar into internal area were calculated by means of instantaneous plane diffusion theory. The experimental results showed that the SO_4~(2-)concentration gradually reduced when the diffusion depth increased in the surface region of mortar. Diffusion coefficient(D) was relevant with the concentration and kind of environmental sulfate solution, which reduced with immersion time at the beginning, and then rose slowly after a period of time. The calculation of initial diffusion coefficient(D_0) and starting time of deterioration(t_∞) caused by sulfate attack was further attempted based on the data of diffusion coefficient, and it was found that D_0 and t∞ were all relevant with concentrations of sulfate and different kind of sulfate as well.  相似文献   

14.
On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L 8 without causing a geomagnetic storm. The flux of the relativistic electrons in the outer radiation belt decreased by half during this event based on the observations of the particle radiation monitor(PRM) of the fourth of the China-Brazil Earth Resource Satellites(CBERS-4). The flux remained low for approximately 11 d; it did not recover after a small magnetic storm on January 26 but after a small magnetic storm on February 2. The loss and recovery of the relativistic electrons during this event are investigated using the PRM data, medium-and high-energy electron observations of NOAA-15 and the Van Allen Probes, medium-energy electron observations of GOES-13, and wave observations of the Van Allen Probes. This study shows that the loss of energetic electrons in this event is related to magnetospheric compression. The chorus waves accelerate the medium-energy electrons, which causes the recovery of relativistic electrons. The Van Allen Probes detected strong chorus waves in the region L =3–6 from January 21 to February 2. However, the flux of medium-energy electrons was low in the region. This implies that the long-lasting lack of recovery of the relativistic electrons after this event is due to the lack of the medium-energy"seed" electrons. The medium-energy electrons in the outer radiation belt may be a clue to predict the recovery of relativistic electrons.  相似文献   

15.
Novel Bi2S3/BiOCl photocatalysts were successfully synthesized via a facile biomolecule-assisted solvothermal method and biomolecule L-cysteine was used as the sulfur source. The structures, morphology, and optical properties of the synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). The presence of Bi2S3 in the Bi2S3/BiOCl composites could not only improve the optical properties but also enhance the photocatalytic activities for the degradation of Rhodamine B (RhB) under visible-light irradiation (λ > 420 nm) as compared with single Bi2S3 and BiOCl. Especially, the sample displayed the best performance of the photodegradation when the feed molar ratio of BiCl3 and L-cysteine was 2.4:1, which was about 10 times greater than that of pure BiOCl. The enhanced photocatalytic activities could be ascribed to the effective separation of photoinduced electrons and holes and the photosensitization of dye. Moreover, the possible photodegradation mechanism was also proposed, and the results revealed that the active holes (h+) and superoxide radicals (?O2 ?) were the main reactive species during photocatalytic degradation.  相似文献   

16.
The hydrophobic silica aerogel (SiO2 aerogel) was prepared by in situ polymerization sol-gel method and ethanol supercritical drying, with tetraethoxysilane (TEOS) as silica source, phenyltriethoxysilane (PTES) as modifier, ethanol as solvent and ammonia as catalyst. The effects of n(PTES)/n(TOES) were investigated on gel time, structure, and hydrophobicity. The SiO2 aerogel was measured by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of n(PTES)/n(TOES) were also studied on adsorption property of pentane, hexane, heptane, octane, benzene, toluene, o-xylene, nitromethane, nitroethane, and nitrobenzene. The adsorption intensity of SiO2 aerogel was compared with that of activated carbon. The results show, with the increasing of n(PTES)/n(TOES), the surface area, pore volume, and pore size of SiO2 aerogel decreased, gel time and hydrophobicity increased, and the contact angle could be 154° with n(PTES)/n(TOES)=0.7. The adsorption intensity of SiO2 aerogel with n(PTES)/n(TOES)=0.5 was bigger than that of activated carbon with an average 5.84 times of 10 organic liquid. The adsorption intensity of aerogel with n(PTES)/n(TOES) =0.1 was the best one in all samples with the average 8.33 times compared with that of activated carbon.  相似文献   

17.
The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1?x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by melt quenching technology. The structures of the as-cast and quenched alloys were characterized by XRD, SEM and HRTEM. The gaseous hydrogen storage kinetics of the alloys was measured using an automatically controlled Sieverts apparatus. The alloy electrodes were charged and discharged with a constant current density in order to investigate the electrochemical hydrogen storage kinetics of the alloys. The results demonstrate that the substitution of Co for Ni results in the formation of secondary phases MgCo2 and Mg instead of altering the major phase Mg2Ni. No amorphous phase is detected in the as-quenched Cofree alloy, however, a certain amount of amorphous phase is clearly found in the as-quenched alloys substituted by Co. Furthermore, both the rapid quenching and the Co substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys, for which the notable increase of the hydrogen diffusion coefficient (D) along with the limiting current density (I L ) and the obvious decline of the electrochemical impedance generated by both the Co substitution and the rapid quenching are basically responsible.  相似文献   

18.
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone(ITZ)between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself.For the convenience of applications,the mortar and concrete were considered as a four-phase spherical model,consisting of cement continuous phase,dispersed aggregates phase,interface transition zone and their homogenized effective medium phase.A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure.During calculation,the tortuosity(n)and constrictivity factors(Ds/D0)of pore in the hardened pastes are n≈3.2,Ds/D0=1.0×10-4respectively from the test data.The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results;The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.  相似文献   

19.
We investigated the effect of annealing process on microstructures and optical properties of the sol-gel derived Ba0.9Sr0.1TiO3 (BST) films. The BST films, fabricated by layer-by-layer high-temperature (? 650 °C) annealing process, had laminated structures consisting of alternating dense and porous BST layers, and exhibited excellent optical performance as Bragg reflectors. The Bragg reflection characteristic can be enhanced with increasing annealing temperature. Those BST films fabricated at temperatures lower than 650°C displayed uniform cross-sectional morphologies even treated at a higher temperature. The difference in the microstructures of the BST thin films was also discussed.  相似文献   

20.
Ca3Co4O9 ceramics were prepared using the sol-gel process with ordinary pressing sintering and their thermoelectric properties were measured from room temperature to 673 K. The experimental results show that single phase Ca3Co4O9 can be fabricated at 750–900 °C in different citrate acid molar proportions for 0.2–1.0. For all the oxides, both the Seebeck coefficients S and the electrical conductivities κ increase with the increasing temperature. The Seebeck coefficients S are all positive. The thermal conductivities k increase with the increasing temperature also and the lattice thermal conductivity κ l plays an important role to the thermal conductivity κ. The citrate acid molar proportions have a large influence on the particle sizes, which influences the thermoelectric properties of the ceramics. The figure of merit increases with the increasing temperature and reaches 4.5×10−5 K−1 at 573 K for the sample in the citrate acid molar proportion of 0.46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号