首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline thin films of ternary ZnIn2Se4 compound with p-type conductivity were deposited on a pre-deposited aluminium (Al) film by a flash evaporation technique. A Schottky diode comprising of Al/p-ZnIn2Se4 structure was fabricated and characterized in the temperature range 303–323 K in dark condition. The Schottky diode was subjected to current (I)-voltage (V) and capacitance (C)-voltage (V) characterization. The Al/p-ZnIn2Se4 Schottky diode showed behaviour typical of a p-n junction diode. The devices showed very good diode behaviour with the rectification ratio of about 105 at 1.0 V in dark. The Schottky diode ideality factor, barrier height, carrier concentration, etc. were derived from I-V and C-V measurements. At lower applied voltages (V≤0.5 V), the electrical conduction was found to take place by thermionic emission (TE) whereas at higher voltages (V>0.5 V), a space charge limited conduction mechanism (SCLC) was observed. An energy band diagram was constructed for fabricated Al/p-ZnIn2Se4 Schottky diode.  相似文献   

2.
Ti/4H–SiC Schottky barrier diode without any intentional edge termination is fabricated. The obtained properties, low on-resistance of 3 mΩ cm2 and low leakage current of 10−4 A/cm2 at 1000 V, are evaluated by device simulation considering pinning at metal/semiconductor interface. The breakdown voltage is explained by minimization of electric field enhancement at the Schottky electrode edge due to pinning. The leakage current corresponds to Schottky barrier tunneling current depending on drift layer doping and Schottky barrier height.  相似文献   

3.
Lattice-matched Pt/Au–In0.17Al0.83N/GaN hetreojunction Schottky barrier diodes (SBDs) with circular planar structure have been fabricated. The electrical characteristics of InAlN/GaN SBD, such as two-dimensional electron gas (2DEG) density, turn-on voltage, Schottky barrier height, reverse breakdown voltage and the forward current-transport mechanisms, are investigated and compared with those of a conventional AlGaN/GaN SBD. The results show that, despite the higher Schottky barrier height, more dislocations in InAlN layer causes a larger leakage current and lower reverse breakdown voltage than the AlGaN/GaN SBD. The emission microscopy images of past-breakdown device suggest that a horizontal premature breakdown behavior attributed to the large leakage current happens in the InAlN/GaN SBD, differing from the vertical breakdown in the AlGaN/GaN SBD.  相似文献   

4.
In this paper, we have investigated the structural, electrical and magnetic characterizations of Ni/Cu/p-Si Schottky diode prepared by liquid phase epitaxy (LPE). Current density-voltage (J-V), capacitance-voltage (C-V) and capacitance-frequency (C-f) measurements were performed to determine the conduction mechanisms as well as extracting the important diode parameters. Rectifying properties were obtained, which definitely of the Schottky diode type. At low voltages, (0 < V ? 0.4 V), current density in the forward direction was found to obey the diode equation, while for higher voltages, (0.5 < V ? 1.5 V), conduction was dominated by a space-charge-limited conduction (SCLC) mechanism. Analysis of the experimental data under reverse bias suggests a transition from electrode-limited to a bulk-limited conduction process for lower and higher applied voltages, respectively. Diode parameters such as, the built-in potential, Vb, the carrier concentration, N, the width of the depletion layer, W, of the Ni/Cu/p-Si Schottky diode were obtained from the C-V measurements at high frequency (1 MHz). The capacitance-frequency measurements showed that the values of capacitance were highly frequency dependent at low frequency region but independent at high frequencies. The Ni/Cu/p-Si Schottky diode showed magnetic properties due to the effect of Ni in the heterostructure.  相似文献   

5.
The temperature dependence of current-voltage (I-V) characteristics of as-fabricated and annealed Ni/n-type 6H-SiC Schottky diode has been investigated in the temperature range of 100-500 K. The forward I-V characteristics have been analysed on the basis of standard thermionic emission theory. It has been shown that the ideality factor (n) decreases while the barrier height (Φb) increases with increasing temperature. The values of Φb and n are obtained between 0.65-1.25 eV and 1.70-1.16 for as-fabricated and 0.74-1.70 eV and 1.84-1.19 for annealed diode in the temperature range of 100-500 K, respectively. The I-V characteristics of the diode showed an increase in the Schottky barrier height, along with a reduction of the device leakage current by annealing the diode at 973 K for 2 min.  相似文献   

6.
In this study, a Schottky diode based on wide band gap semiconductor ZnO was fabricated on p-type Si substrate using sol-gel spin coating method. Al/ZnO/p-Si diode indicates a rectification behavior. At lower voltages, the forward current of the diode was found to obey the intrinsic thermally generated charge carriers and at relatively higher voltages, the current mechanism of the diode is controlled by a space charge limited conduction mechanism. Under reverse bias conditions, the current-voltage characteristics of the diode exhibit the lower current as compared under forward bias, indicating the existence of a current limitation mechanism induced by two field lowering mechanisms which are Poole-Frenkel and Schottky mechanisms. The parameters, series resistance RS, the ideality factor n and the barrier height φB0 of the diode were determined by performing different plots obtained from the experimental forward bias current-voltage. The capacitance measurements show that the values of capacitance were almost independent of the forward bias under various frequencies. The higher values of the capacitance at low frequencies were attributed to the excess capacitance resulting from the interface states in equilibrium with the ZnO.  相似文献   

7.
Schottky contact formation on p-GaN using W2B/Pt/Au and W2B5/Pt/Au metallization schemes was investigated using x-ray photoelectron spectroscopy (XPS), current-voltage (I-V), and Auger electron spectroscopy measurements. The Schottky barrier height (SBH) determined from XPS is 2.71 eV and 2.87 eV for as-deposited W2B- and W2B5-based contacts, respectively. By comparison, fitting of the I-V curves using the thermionic field emission model gives unphysical SBHs > 4 eV due to the presence of an interfacial layer acting as an additional barrier to carrier transport. Upon annealing to ∼600–700°C, the diodes show slight deterioration in rectifying behavior due to the onset of metallurgical reactions with the GaN. The experimental dependence of the reverse leakage current on bias and measurement temperature is inconsistent with both thermionic emission and thermionic field emission models, suggesting that leakage must originate from other mechanisms such as surface leakage or generation in the depletion layer through deep-level defects.  相似文献   

8.
Nickel and titanium are the most commonly used metals for Schottky barrier diodes on silicon carbide (SiC). Ti has a low Schottky barrier height (i.e. 0.8 eV on 6H-SiC), whilst Ni has a higher barrier (i.e. 1.25 eV). Therefore, the first metal allows to achieve a low forward voltage drop VF but leads to a high leakage current. On the other hand, the second one presents the advantage of a lower reverse leakage current but has also a high value of VF. In this work, dual-metal-planar (DMP) Schottky diodes on silicon carbide are reported. The rectifying barrier was formed by using an array of micrometric Ti and Ni2Si (nickel silicide) stripes. This low/high Schottky barrier allowed to combine the advantages of the two metals, i.e. to fabricate diodes with a forward voltage drop close to that of a Ti diode and with a level of reverse current comparable to that of a Ni2Si diode. Under the application point of view, using this kind of barrier can lead to a reduction of the device power dissipation and an increase of the maximum operating temperature.  相似文献   

9.
We report on the ultraviolet (UV) photodetection properties of a Pt contact on a sol-gel Mg0.1Zn0.9O/ZnO composite structure on a glass substrate. In the dark, the current–voltage (IV) characteristics between the Pt and Ag contacts on the top of the ZnO film were linear while that on the Mg0.1Zn0.9O/ZnO composite film were rectifying, suggesting the formation of a Schottky diode on the latter. The ideality factor, n, and the reverse leakage current density, J R , of the Schottky diode were greater than 2 and 2.36 × 10−2 A cm−2 at −5 V, respectively. Under ultraviolet light, the IV characteristics become linear. The maximum photo-to-dark current ratio observed was about 63. The composite film showed good sensitivity to UV light with wavelengths of less than 400 nm, though the photoresponse process was found to be slow.  相似文献   

10.
A technique has been devised whereby the foreward bias edge current of a planar Schottky diode can be separated from the area current. The saturation current density and ideality factor of this edge current have been measured, the edge saturation current density being related to the area saturation current density by a newly defined edge figure of merit, Me. The area current agrees very closely with the thermionic emission Schottky diode equation, whereas the edge currents exhibit serious departures from this equation. No guard rings or process steps other than those normally used to fabricate diodes are needed to obtain these measurements. An ultra-low-noise preamplifier has been constructed which is sufficiently sensitive to detect the difference between the thermal noise of a short and a 5 ohm resistor. Noise power levels approaching case12kT (pure shot noise) have been observed in unpassivated Schottky diodes. The low frequency noises (1/f noise) of planar Schottky diodes has been measured and correlated with the edge currents, the correlation being expressed in the form of a newly defined noise figure of merit, Mn. The technique and figures of merit are universally applicable to all forms of planar diode structures, including Schottky barrier and diffused junction types.  相似文献   

11.
W–Si–N thin films were deposited via rf-magnetron sputtering from a W5Si3 target in Ar/N2 reactive gas mixtures over a large range of compositions, obtained by varying the partial flow of nitrogen within the reaction chamber. The samples of each set were then thermally annealed in vacuum at different temperatures up to 980 °C.Film composition was determined by Rutherford backscattering spectrometry (RBS), surface film morphology by scanning electron microscopy (SEM), micro-structure by transmission electron microscopy (TEM), vibrational properties by FT-IR absorption and Raman scattering spectroscopy, and electrical resistivity by four-point probe measurements.Independently of the deposition conditions, all the as-deposited films have an amorphous structure, while their composition varies, showing an increase of Si/W ratio from 0.1 up to 0.55 when the nitrogen concentration in the films increases from 0 to 60 at%. Thermal treatments in vacuum induce an important loss of nitrogen in the nitrogen-rich samples, especially at temperatures higher than 600 °C. Samples with high nitrogen content preserve their amorphous structure even at the highest annealing temperature, despite the chemical bonding ordering observed by means of FT-IR measurements. Raman spectroscopy of as-deposited films rich in nitrogen suggests the presence of an important amorphous silicon nitride component, but fails to detect any structural rearrangement either within the composite matrix of film or within silicon nitride component. Segregation of metallic tungsten was detected by TEM in the annealed sample with lowest nitrogen content (W58Si21N21). Finally, the resistivity of the films increases with the N content, while the loss of nitrogen accompanies the decrease of resistivity especially of samples with high nitrogen content.  相似文献   

12.
The high‐bias electrical characteristics of back‐gated field‐effect transistors with chemical vapor deposition synthesized bilayer MoS2 channel and Ti Schottky contacts are discussed. It is found that oxidized Ti contacts on MoS2 form rectifying junctions with ≈0.3 to 0.5 eV Schottky barrier height. To explain the rectifying output characteristics of the transistors, a model is proposed based on two slightly asymmetric back‐to‐back Schottky barriers, where the highest current arises from image force barrier lowering at the electrically forced junction, while the reverse current is due to Schottky‐barrier‐limited injection at the grounded junction. The device achieves a photoresponsivity greater than 2.5 A W?1 under 5 mW cm?2 white‐LED light. By comparing two‐ and four‐probe measurements, it is demonstrated that the hysteresis and persistent photoconductivity exhibited by the transistor are peculiarities of the MoS2 channel rather than effects of the Ti/MoS2 interface.  相似文献   

13.
High-temperature (500-580°C) current-voltage (I-V ) characteristics of gold contacts to boron-doped homoepitaxial diamond films prepared using a plasma-enhanced chemical vapor deposition (CVD) method are described. Schottky diodes were formed using gold contacts to chemically cleaned boron-doped homoepitaxial diamond films. These devices incorporate ohmic contacts formed by annealing Au(70 nm)/Ti(10 nm) layers in air at 580°C. The experiments with homoepitaxial diamond films show that the leakage current density increases with the contact area. This implies that a nonuniform current distribution exists across the diode, presumably due to crystallographic defects in the diamond film. As a result, Au contacts with an area >1 mm2 are essentially ohmic and can be used to form back contacts to Schottky diodes. Schottky diodes fabricated in this matter also show rectifying I-V characteristics in the 25-580°C temperature range  相似文献   

14.
High voltage GaN Schottky rectifiers   总被引:1,自引:0,他引:1  
Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (VRB) up to 550 and >2000 V, respectively, have been fabricated. The on-state resistance, RON , was 6 mΩ·cm2 and 0.8 Ω cm2 , respectively, producing figure-of-merit values for (VRB )2/RON in the range 5-48 MW·cm-2 . At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5 V for the 550 V diodes and ⩾15 for the 2 kV diodes. Reverse recovery times were <0.2 μs for devices switched from a forward current density of ~500 A·cm-2 to a reverse bias of 100 V  相似文献   

15.
A physics-based closed form analytical model for the reverse leakage current of a high voltage junction barrier Schottky (JBS) diode is developed and shown to agree with experimental results. Maximum electric field “seen” by the Schottky contact is calculated from first principles by a 2-dimensional method as a function of JBS diode design parameters and confirmed by numerical simulations. Considering thermionic emission under image force barrier lowering and quantum mechanical tunneling, electric field at the Schottky contact is then related to reverse current. In combination with previously reported forward current and resistance models, this gives a complete I-V relationship for the JBS diode. A layout of interdigitated stripes of P-N and Schottky contacts at the anode is compared theoretically with a honeycomb layout and the 2-D model is extended to the 3-D honeycomb structure. Although simulation and experimental results from 4H-Silicon Carbide (SiC) diodes are used to validate it, the model itself is applicable to all JBS diodes.  相似文献   

16.
Electron irradiation of the Au/n-Si/Al Schottky diode was performed by using 6 MeV electrons and 3 × 1012 e/cm2 fluency. The current-voltage (I-V), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristics of the unirradiated and irradiated Schottky diode were analyzed. It was seen that the values of the barrier height, the series resistance, and the ideality factor increased after electron irradiation. However, there was a decrease in the leakage current with electron irradiation. The increase in the barrier height and in the series resistance values was attributed to the dopant deactivation in the near-interface region. The interface states, Nss, have been decreased significantly after electron irradiation. This was attributed to the decrease in recombination centre and the existence of an interfacial layer. A decrease in the capacitance was observed after electron irradiation. This was attributed to decrease in the net ionized dopant concentration with electron irradiation.  相似文献   

17.
In this paper, we will report that the leakage current characteristics can be a function of the bottom electrode. The variation of the bottom tungsten electrode thickness can affect the leakage current characteristics of W/Ta2O5/W MIM capacitors mainly through two mechanisms. The first mechanism is that the Ta2O5 CVD process can be influenced by the W bottom electrode thickness. Experimentally it was observed that the thickness of the Ta2O5 film deposited by CVD is noticeably different for samples with different bottom W electrodes with different thicknesses. The second mechanism is that the surface roughness of the bottom W electrode increases with increasing thickness, resulting in a smaller effective Schottky barrier height. A smaller effective Schottky barrier height will lead to larger leakage current.  相似文献   

18.
An analysis of the solar cell properties of an AlPN Si Schottky diode has been made assuming a generalised impurity distribution in the P-type doped layer. The effect of the image force potential on the effective barrier height is considered. The effect of a constant built-in feld in the substrate has also been included in the analysis. Important solar cell parameters such as open circuit voltage (Voc), short-circuit current (Isc) and fill factor (FF) have been calculated as a function of the impurity concentration in the doped layer and its thickness. It is shown that the efficiency η depends strongly on the nature of the impurity profile, being highest for the Gaussian and lowest for the exponential. Finally, the presence of a built-in field (Eb = 4.5 V/cm) in the substrate is found to increase the resultant η which is about 6–8% higher than that of a diode without the drift field.  相似文献   

19.
Ni-germanosilicided Schottky barrier diode has been fabricated by annealing the deposited Ni film on strained-Si and characterized electrically in the temperature range of 125 K–300 K. The chemical phases and morphology of the germanosilicided films were studied by using scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The Schottky barrier height (b), ideality factor (n) and interface state density (Dit) have been determined from the current–voltage (IV) and capacitance–voltage (CV) characteristics. The current–voltage characteristics have also been simulated using SEMICAD device simulator to model the Schottky junction. An interfacial layer and a series resistance were included in the diode model to achieve a better agreement with the experimental data. It has been found that the barrier height values extracted from the IV and CV characteristics are different, indicating the existence of an in-homogeneous Schottky interface. Results are also compared with bulk-Si Schottky diode processed in the same run. The variation of electrical properties between the strained- and bulk-Si Schottky diodes has been attributed to the presence of out-diffused Ge at the interface.  相似文献   

20.
Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the pin diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号