首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
采用扫描电镜、透射电镜及性能测试等方法研究了回火工艺对海洋工程用钢E690组织和性能的影响。结果表明:在同一回火时间下,随着回火温度的增加,试验钢强度呈下降趋势,伸长率呈上升趋势,低温冲击吸收能量先上升然后下降。在同一回火温度下,随着回火时间的延长,试验钢强度呈下降趋势,伸长率先上升后下降,630 ℃和650 ℃回火温度下的低温冲击吸收能量受影响较小。试验钢回火后的组织以板条贝氏体为主;其组织随回火温度的增加,由板条贝氏体向粒状贝氏体转变,钢中析出物也相应粗化。  相似文献   

2.
采用扫描电镜、透射电镜及性能测试等方法研究了回火工艺对海洋工程用钢E690组织和性能的影响。结果表明:在同一回火时间下,随着回火温度的增加,试验钢强度呈下降趋势,伸长率呈上升趋势,低温冲击吸收能量先上升然后下降。在同一回火温度下,随着回火时间的延长,试验钢强度呈下降趋势,伸长率先上升后下降,630℃和650℃回火温度下的低温冲击吸收能量受影响较小。试验钢回火后的组织以板条贝氏体为主;其组织随回火温度的增加,由板条贝氏体向粒状贝氏体转变,钢中析出物也相应粗化。  相似文献   

3.
《热处理》2020,(3)
低碳高强度Q690D钢适用于大型工程的结构件。对含碳量为0.14%~0.16%(质量分数)、厚度为100 mm的Q690D钢板进行了920℃水淬和分别于560℃、580℃及620℃回火处理。分别检测了钢板淬火态及淬火和不同温度回火后的显微组织和力学性能,以研究回火温度对钢板组织和性能的影响。结果表明:①淬火并经3种温度回火的钢板的力学性能均满足标准要求,随着回火温度的提高,强度略有下降,620℃回火的钢板屈服强度为810 MPa,抗拉强度为880 MPa,断后伸长率达16.5%,-20℃纵向冲击吸收能量达137 J;②淬火后钢板从表面到心部的组织均为板条马氏体和少量板条贝氏体,经560℃、580℃、620℃回火后,其组织为回火索氏体加板条贝氏体。综合起来看,大厚度Q690D钢板淬火后的回火温度以620℃最佳。  相似文献   

4.
690 MPa级低碳贝氏体钢回火后的组织与性能   总被引:3,自引:1,他引:2  
利用扫描电镜(SEM)、透射电镜(TEM)研究不同回火温度对屈服强度为690 MPa 级低碳贝氏体钢组织和性能的影响.结果表明,回火温度对试验钢的屈服强度的影响更为明显,而对抗拉强度的影响相对较小;未经回火时,试验钢的轧态组织为细小的板条贝氏体,随着回火温度的增加, 钢板-60 ℃冲击性能得到显著改善,贝氏体板条束逐渐合并在一起,试验钢板在650 ℃回火时可获得良好的综合力学性能.  相似文献   

5.
采用显微组织观察、拉伸试验、冲击试验、硬度测试等研究了不同温度回火对E690高强钢显微组织与力学性能的影响。结果表明:920℃淬火态E690钢组织主要为板条马氏体,板条组织较为细密。再进行560~680℃回火试验,随着回火温度的升高,E690钢板条马氏体减少,板条界面变得模糊。随着回火温度的升高,E690钢的屈服强度、硬度逐渐下降,-40℃低温冲击功先升高后降低再升高。560℃回火的E690钢屈服强度、硬度最高,分别达到786 MPa、293 HV。600℃回火的E690钢低温冲击功最高,达到196 J。  相似文献   

6.
对高性能桥梁钢的成分进行了设计,并通过不同的控轧控冷工艺轧制成不同板厚的钢板。钢板经过回火后,进行了力学性能的测试及组织分析。结果表明,高性能桥梁钢回火后的强度较高,屈服强度达到600 MPa以上,伸长率达到20%以上。由于轧制工艺的不同,不同板厚的钢板冲击性能有较大的差距;显微组织主要由粒状贝氏体和板条贝氏体组成。测定了高性能桥梁钢的连续冷却转变曲线,结果表明:实际生产中,应将冷速控制在10~30℃/s,开始冷却温度约780℃,此时的相变组织为较均匀的贝氏体组织。  相似文献   

7.
对12MnNiVR压力容器钢进行热轧和950℃淬火,并对其分别在600、630、660和690℃下进行回火处理。并通过光学显微镜、扫描电镜、透射电镜、拉伸试验机和冲击试验机对试验钢的进行微观组织形貌观察和力学性能检测。结果表明:淬火后试验钢组织由马氏体、贝氏体及少量残留奥氏体组成。回火后组织主要是回火马氏体以及回火索氏体。随回火温度的升高,部分回火马氏体消失,形成回火索氏体组织。试验钢强度在较低的回火温度时下降缓慢,较高回火温度下强度急剧下降而伸长率则在不断增加。试验钢690℃回火时,获得较优的综合力学性能,屈服强度、抗拉强度、伸长率和-40℃下的冲击吸收能量分别达到605 MPa,670 MPa,25. 9%,113. 7 J。  相似文献   

8.
采用光学显微镜、拉伸试验、冲击试验及硬度试验研究了模拟焊后热处理对15Cr Mo钢组织和力学性能的影响。结果表明:经690℃模拟焊后热处理后,15Cr Mo钢的屈服极限、抗拉强度、高温强度、冲击吸收能量以及硬度均有升高的趋势,伸长率有所降低;随着保温时间的延长,屈服强度、抗拉强度、高温强度、冲击吸收能量、硬度以及伸长率均呈降低趋势。在690℃模拟焊后热处理保温不同时间后,15Cr Mo钢的显微组织均为回火贝氏体+铁素体,随着保温时间的延长,钢中铁素体数量逐渐增多,晶粒尺寸增大。  相似文献   

9.
对贝氏体钢轨钢不同工艺回火后的组织和性能进行研究.结果表明,350℃回火4h及以上,贝氏体钢轨屈服强度大于1000 MPa,抗拉强度大于1200 MPa,伸长率和断面收缩率分别大于15%和45%,室温冲击功大于150 J;在450~550℃回火时,出现明显的回火脆性.金相显微镜和透射电子显微镜观察表明,贝氏体轨钢以粒状贝氏体组织为主,残留奥氏体在板条间以M-A岛状形式分布.不同回火温度及3%拉伸变形后试验贝氏体轨钢残留奥氏体的测定结果表明,350℃回火时的残留奥氏体机械稳定性最好.贝氏体钢轨的强韧性随回火温度的变化与残留奥氏体的机械稳定性密切相关.  相似文献   

10.
采用扫描电镜和拉伸试验机研究了C-Mn-Mo-Ni-Nb-Ti-V 系低碳微合金钢950 ℃淬火和560~640 ℃回火调质处理对钢微观组织及力学性能的影响。结果表明,轧态钢板中含有大量细小均匀的粒状贝氏体(GB)组织,有良好的强韧性。调质后,试验钢获得板条贝氏体及铁素体的混合组织,随回火温度的升高,板条贝氏体回复作用逐渐加强,相邻板条合并,致使组织粗化。试验钢经950 ℃淬火+640 ℃回火后,其强度下降,韧性和塑性明显提高,伸长率为26.9%,-20 ℃夏比冲击吸收能量为392 J,断口剪切面积达到100%。  相似文献   

11.
通过Gleeble-1500热模拟试验机,结合微观组织观察和硬度测试,绘制了Q690D厚规格钢板以不同速度连续冷却至室温的CCT曲线。结果表明,当冷速较低时,组织中存在先共析铁素体和珠光体区域,但其范围较小;冷却速度为3 ℃/s时,组织中出现板条贝氏体。试验钢在较宽的冷速范围内能够获得粒状贝氏体、粒状贝氏体+板条贝氏体组织。冷速达到15 ℃/s时,组织中即出现马氏体,试验钢淬透性较好,硬度值变化不明显。从试验钢板的调质组织观察发现,厚度截面不同位置的硬度值差异很小,组织特征相同,说明热模拟试验的结果同实际生产的厚规格钢板的组织及硬度具有高度的一致性。  相似文献   

12.
研究了正火后回火温度对无碳化物贝氏体钢无缝钢管组织和性能的影响。试验结果表明,930 ℃正火后在600 ℃以下回火时,随回火温度的提高,试验材料的抗拉强度有降低的趋势,但降幅不大,强度在973~1012 MPa变化。试验材料的冲击吸收能量在300 ℃达到最大值,为72 J;400 ℃回火时,冲击吸收能量出现最低值,出现无碳化物贝氏体钢的回火脆性;回火温度超过400 ℃时,冲击吸收能量上升;300~350 ℃回火时,伸长率和断面收缩率最高。在400 ℃以下回火时,试验材料的组织由无碳化物贝氏体、块状铁素体和残留奥氏体组成;超过400 ℃回火时,组织为粒状贝氏体及块状铁素体。无碳化物贝氏体钢无缝钢管930 ℃正火,300 ℃回火时具有较佳的综合力学性能。  相似文献   

13.
研究了回火温度对一种低温压力容器用低合金高强度(HSLA)贝氏体钢组织和性能的影响。结果表明,经过910℃淬火后组织为粒状贝氏体,贝氏体板条界面及板条上分布有条状或块状M-A岛。回火温度在350~550℃区间升温时,M-A岛分解析出渗碳体;回火温度为635℃时,M-A岛完全分解为细小弥散的渗碳体颗粒;回火温度升至700℃时,贝氏体铁素体组织发生再结晶,板条结构消失,成为块状铁素体结构,渗碳体明显粗化。随着回火温度的升高,抗拉强度降低,伸长率和-50℃冲击功增加,屈服强度先升高后降低,冲击断口由脆性解理断口向韧性纤维断口变化。经过910℃淬火+635℃回火后达到最佳的强韧匹配度,抗拉强度为606 MPa,-50℃冲击功达到279 J。  相似文献   

14.
研究了回火温度对一种低温压力容器用低合金高强度(HSLA)贝氏体钢组织和性能的影响。结果表明,经过910℃淬火后组织为粒状贝氏体,贝氏体板条界面及板条上分布有条状或块状M-A岛。回火温度在350~550℃区间升温时,M-A岛分解析出渗碳体;回火温度为635℃时,M-A岛完全分解为细小弥散的渗碳体颗粒;回火温度升至700℃时,贝氏体铁素体组织发生再结晶,板条结构消失,成为块状铁素体结构,渗碳体明显粗化。随着回火温度的升高,抗拉强度降低,伸长率和-50℃冲击功增加,屈服强度先升高后降低,冲击断口由脆性解理断口向韧性纤维断口变化。经过910℃淬火+635℃回火后达到最佳的强韧匹配度,抗拉强度为606 MPa,-50℃冲击功达到279 J。  相似文献   

15.
在Gleeble-3500型热模拟试验机上,对E690海洋用钢进行直接淬火及快速加热条件下不同温度的回火处理,并采用光学显微镜等设备研究了不同的回火温度对其组织、析出物及显微硬度的影响。结果表明:实验钢直接淬火态组织以板条贝氏体为主,经回火后,组织为板条贝氏体、粒状贝氏体、多边形铁素体的混合组织,不同的回火温度下各自所占比例不同;回火后的析出物主要是10 nm以内的ε-Cu颗粒和20 nm以内的Nb、Ti、Cu的复合析出颗粒,它们均匀、弥散、细小地分布于基体上;550、580和620℃回火时的晶界取向差以≤15°的小角度晶界较多,使材料具有优良的韧塑性;不同回火温度对试样的显微硬度值影响较大,其随回火温度的升高呈现先升高后下降再略微升高的趋势。  相似文献   

16.
热处理工艺对300M超高强度钢组织和性能的影响   总被引:1,自引:0,他引:1  
采用SEM、TEM等方法研究了不同回火温度对300M超高强度钢的显微组织和力学性能的影响。结果表明,300M钢经870℃淬火后,在290~320℃范围内回火,显微组织为板条马氏体、下贝氏体和残留奥氏体组成。随着回火温度的升高,板条马氏体宽度由260 nm增加到437 nm,位错密度减小,下贝氏体含量增多;合金的抗拉强度有所下降,韧性呈上升趋势,而屈服强度、伸长率和断面收缩率变化较小。当回火温度为300℃时,强度、塑性和韧性达到一个最佳匹配,合金具有最优的综合力学性能。  相似文献   

17.
采用真空感应炉冶炼了试验钢,并用二辊可逆式轧机进行了轧制,分别用空冷、水淬、油淬三种方式冷却,并对水淬后的试验钢进行了不同温度的回火处理,研究了冷却方式及回火对试验钢组织及性能的影响。结果表明,水淬试验钢的强度最高,而冲击功及塑性最差;油淬钢的强度低于水淬,但冲击功最高,空冷钢的强度最低,塑性最高。空冷钢的组织以粒状贝氏体为主,以及不规则铁素体;水淬钢的组织为细小的板条贝氏体+少量粒状贝氏体;油淬钢的组织为细小的板条状贝氏体。回火对试验钢强度的影响不大,对塑性、韧性的影响则比较明显。强度随回火温度提高先略微升高后降低,韧性则先降低后升高。600℃时获得最高强度及较优的塑性和韧性,550℃时发生脆化。  相似文献   

18.
热轧态高强度新型贝氏体钢管具有较高强度,但冲击值较低,回火可以改善其冲击韧性。研究回火温度对热轧态高强度新型贝氏体钢管组织和性能的影响。试验结果表明:550℃以下温度回火,随回火温度提高,该新型贝氏体钢管的抗拉强度有降低趋势,但下降幅度不大;350℃以下温度回火,其冲击值随回火温度的提高而增加;400℃回火时冲击值降低,出现回火脆性;450℃以上温度回火时冲击值增加;250~350℃回火时钢管强度较高,550~650℃回火时韧性较高。400℃以下温度回火,该新型贝氏体钢管的组织均为板条贝氏体、粒状贝氏体、铁素体及残余奥氏体组织;回火温度超过500℃,残余奥氏体完全分解,组织为铁素体和粒状贝氏体。  相似文献   

19.
采用箱式电阻炉对高强度建筑钢进行了不同温度的回火,并对回火试样进行了显微组织观察,对拉伸性能和冲击性能进行了检验。结果表明,试验钢回火后组织以铁素体+贝氏体为主,随着回火温度升高,M-A逐渐分解,粒状贝氏体含量减少,铁素体晶粒尺寸增加;抗拉强度、屈服强度、屈强比和冲击功均先升高后降低,伸长率增加,断面收缩率则先略有降低后升高。综合考虑力学性能试验结果,当试验钢回火时间为60 min时,最佳回火温度为600℃。  相似文献   

20.
回火温度对超低碳贝氏体钢(ULCB)组织与性能的影响   总被引:1,自引:0,他引:1  
超低碳贝氏体钢经两阶段控轧控冷,在不同温度进行一定时间的回火,检测了热处理前后钢板力学性能并对比分析了组织特点.结果表明,随着回火温度的升高,贝氏体板条逐渐合并,过渡到粒状贝氏体,随着回火温度的进一步升高,出现粗大的准多边形铁素体组织;在490 ℃~620 ℃范围内进行热处理,试验钢会得到良好的综合性能;粒状贝氏体组织在-20 ℃的低温冲击功在560 ℃热处理达到最小值,之后随着回火温度的升高而大幅提高;而含有板条贝氏体组织钢的-20 ℃低温冲击功随着热处理温度的升高而有所改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号