首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
对建筑用低合金钢进行了直接淬火+回火、一次淬火+回火和二次淬火+回火热处理,研究了奥氏体化温度对试验钢拉伸性能、-20℃冲击性能和显微组织的影响规律,优化了试验钢的淬火+回火工艺,并分析两相区淬火+回火工艺的作用机理。结果表明,三种不同热处理工艺下,试验钢的抗拉强度、规定塑性延伸强度、屈强比和-20℃冲击吸收能量都随着奥氏体化温度的升高而呈现不断降低的趋势,采用一次淬火+回火或二次淬火+回火热处理可以显著降低试验钢的屈强比并提高冲击吸收能量,适宜的奥氏体化温度为900~1000℃;直接淬火+回火试样的显微组织为回火马氏体,一次淬火+回火和二次淬火+回火试样的显微组织都为回火马氏体+铁素体,同时在马氏体板条界面或者相界面处析出了尺寸不等的细小M_(23)C_6相。  相似文献   

2.
为了改善高压气瓶用34CrMo4钢屈强比较高的问题,分别研究了调质处理(QT)、在浓度为7.5%PAG水溶性淬火剂中的淬火+回火(Q1T)、亚温淬火+回火(IT)和淬火+亚温淬火+回火(QIT)4种不同热处理工艺对34CrMo4钢屈强比的影响,以及屈强比与微观组织之间的关系。结果表明:采用QT工艺得到回火索氏体组织,屈强比最高;采用Q1T工艺得到较粗的回火索氏体组织,屈强比较高;采用IT工艺得到回火索氏体+块状及板条状铁素体两相组织,屈强比较低;采用QIT工艺得到回火索氏体+均匀分布的板条铁素体两相组织,屈强比最低。试样的组织为硬相回火索氏体上分布着软相铁素体时,有较低的屈强比。  相似文献   

3.
赵喜伟  龙杰  庞辉勇  吕建会 《轧钢》2022,39(3):103-107
采用常规化学成分、轧制和调质热处理工艺生产的超高强EH690钢板屈强比在0.96以上,为了实现钢板较低的屈强比,一般采用低碳、高合金的化学成分设计,然后再进行两次淬火(常温淬火Q+两相区淬火Q')+回火的工艺,生产工艺复杂,生产成本较高。为此,采用低合金化学成分设计,合理的控轧控冷工艺及亚温淬火+回火的热处理工艺,研究了不同亚温淬火温度、回火温度对EH690钢板力学性能和显微组织的影响。结果表明:所设计化学成分的EH690钢板经过815 ℃的亚温淬火+480 ℃回火热处理后,钢板具有合适比例的软相铁素体和硬相马氏体双相组织,这种组织在保证钢板具有较好力学性能的同时屈强比也降低到0.90左右。采用该工艺,简化了生产工艺流程,降低了生产成本,实现了低屈强比超高强EH690钢板的工业化大规模生产。  相似文献   

4.
研究了奥氏体化温度对高层建筑用钢拉伸力学性能、-20℃冲击性能和显微组织的影响,分析了直接淬火+回火、一次淬火+回火和二次淬火+回火热处理这3种热处理工艺,并优化了试验钢的淬火+回火工艺。结果表明:试验钢在这3种热处理工艺下的抗拉强度、屈服强度、屈强比和-20℃冲击功都随着奥氏体化温度的升高呈现降低的趋势,采用一次淬火+回火或二次淬火+回火热处理可以显著降低试验钢的屈强比并提高冲击韧性,适宜的奥氏体化温度为900~1000℃;直接淬火+回火试样的金相组织为回火马氏体,一次淬火+回火和二次淬火+回火试样的金相组织都为回火马氏体+铁素体;同时,在马氏体板条界面和相界面处析出了尺寸不等的细小M23C6相。  相似文献   

5.
采用控轧+两相区淬火+回火(TMCP+ Q'+T)工艺制备了690 MPa级低屈强比高强度结构钢,重点研究了两相区淬火温度和回火温度对实验钢组织性能的影响.结果表明,随着两相区淬火温度的升高,实验钢中铁素体相体积分数减少,铁素体的形貌由多边形转变为针片状且更加细小均匀,马氏体相的体积分数逐渐增加,尺寸变大,但实验钢的力学性能并未出现明显的变化;随着回火温度升高,实验钢中针片状的铁素体发生回复再结晶,马氏体发生分解,实验钢的塑性和韧性提高,但强度降低,屈强比升高.  相似文献   

6.
对9Ni钢厚板进行了4种热处理工艺试验,分别是终轧后直接淬火+回火(DQ+T)、淬火+回火(QT)、淬火+双相区淬火+回火(QLT)和热轧后空冷到双相区淬火+回火(LT),分析了热处理工艺对9Ni钢组织与性能的影响规律.结果表明,9Ni钢采用DQ+T工艺热处理可获得最高的强度,但-196℃低温下的冲击功只有139 J;采用传统的QT和QLT能保持较高的低温韧性,低温冲击功分别为198 J和223 J.采用QT工艺的强度和屈强比高,伸长率较QLT处理的要低.采用QLT工艺获得铁素体,钢板低温韧性显著提高的同时强度则有较大幅度的降低,而伸长率最高;采用LT工艺热处理的钢板低温冲击功为225 J,达到QLT工艺水平,其屈服强度、抗拉强度和伸长率均比QT处理的钢板的同类指标要高,是一种兼有高韧性和高强度的新工艺.  相似文献   

7.
国内传统的特厚板热处理方式为调质处理,钢板表面为索氏体组织,心部为索氏体、贝氏体组织,可以获得较为理想的强度,但由于特厚板厚度较大,厚度方向组织不均匀,无法获得优良的韧性。采用Q550D低碳贝氏体钢的化学成分设计并采用QLT(淬火+两相区亚温淬火+回火)热处理工艺,引入未溶铁素体相,使钢板获得贝氏体+铁素体的均匀混合组织,在保证强度的基础上进一步提高了韧性,进而获得优良的综合性能。研究了不同单相区淬火温度、两相区亚温淬火温度及回火温度下试样的组织与性能,得出Q550D特厚板最佳的热处理工艺:925℃淬火+830℃两相区亚温淬火+640℃回火。  相似文献   

8.
研究了铜含量以及热处理工艺对9%Ni钢屈强比的影响。采用光学显微镜(OM)、扫描电镜(SEM)观察了钢的组织特征,测试了钢的拉伸性能、硬度以及晶粒度。结果表明,经淬火+两相区淬火+回火(QLT)处理,随着Cu含量(0~1.5%)的增加,钢中马氏体量增加,铁素体量减少,同时还可细化晶粒,而且可能造成强烈的第二相强化,三者共同作用导致的屈强比增加。QLT处理较常规热处理可显著降低钢的屈强比,9%Ni钢中添加适量铜有利于钢强度及屈强比的匹配。  相似文献   

9.
通过光学显微镜(OM)、透射电镜(TEM)、拉伸试验机和冲击试验机等手段研究了两相区淬火温度对一次淬火+回火和二次淬火+回火态工程机械用Q690钢显微组织和力学性能的影响,并对比分析了直接淬火+回火态试样的力学性能。结果表明,一次淬火和二次淬火态试样的光学显微组织都为铁素体+马氏体,且随着两相区温度的升高,一次淬火态和二次淬火态试样中马氏体含量都呈现为逐渐升高的趋势。一次淬火+回火态试样光学显微组织为多边形铁素体和回火马氏体,二次淬火+回火态试样的光学显微组织为针状铁素体和回火马氏体。一次淬火+回火和二次淬火+回火态试样的强度略低于直接淬火+回火态,但是-20℃冲击吸收能量明显提高、屈强比显著减小。在两相区温度为760℃时,一次淬火+回火和二次淬火+回火态工程机械用Q690钢具有较高的强度、低屈强比和高冲击韧性。  相似文献   

10.
对低合金高强钢分别进行淬火+回火(QT)热处理和淬火+两相区的亚温淬火+回火(QLT)三段式热处理,采用光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)方法等观察分析其显微组织形貌、组成相和大角度晶界的密度分布,并测试其力学性能。结果表明:相比于QT工艺,低合金高强钢在QLT工艺后,强度虽稍有下降,但低温冲击韧性显著提高,而且屈强比降低,表现出良好的综合力学性能。在发生奥氏体逆转变以及两相区等温过程中,亚温淬火工艺细化新生成的奥氏体晶粒尺寸、增加大角度晶界密度,使有效晶粒尺寸明显减小,残留奥氏体的含量明显增加。  相似文献   

11.
对低合金高强钢分别进行淬火+回火(QT)热处理和淬火+两相区的亚温淬火+回火(QLT)三段式热处理,采用光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)方法等观察分析其显微组织形貌、组成相和大角度晶界的密度分布,并测试其力学性能。结果表明:相比于QT工艺,低合金高强钢在QLT工艺后,强度虽稍有下降,但低温冲击韧性显著提高,而且屈强比降低,表现出良好的综合力学性能。在发生奥氏体逆转变以及两相区等温过程中,亚温淬火工艺细化新生成的奥氏体晶粒尺寸、增加大角度晶界密度,使有效晶粒尺寸明显减小,残留奥氏体的含量明显增加。  相似文献   

12.
对某600 MPa级低合金高强钢采用了淬火+回火的热处理方式,研究了不同回火温度以及不同淬火温度对其组织性能的影响。结果表明,随着回火温度的升高,屈服强度、抗拉强度以及屈强比都呈下降趋势,伸长率逐渐上升,在620 ℃以上回火时出现第二类回火脆性,导致冲击性能急剧降低;在淬火温度达到820 ℃后得到的两相区淬火组织为铁素体+粒状贝氏体,有利于阻止裂纹的扩展,确保有较高的冲击性能。  相似文献   

13.
借助全自动淬火膨胀仪测定钢的Ac1、Ac3相变点,通过对试验钢进行淬火+亚温淬火+回火热处理和淬火+回火热处理,研究了两种热处理工艺下30MnCrNiMo高强钢的组织与性能。结果表明:30MnCrNiMo高强钢的Ac1、Ac3相变点分别为653、807 ℃。采用淬火+亚温淬火+回火的热处理工艺所获得的马氏体和铁素体复相组织比直接淬火+回火得到的全马氏体组织更为细小、均匀,试验钢的屈服强度为1499 MPa,伸长率为14.0%,室温、-40 ℃冲击吸收能量分别为35.5和29.5 J,钢的塑性和冲击性能显著提升,有效改善了30MnCrNiMo高强钢的强韧性能。  相似文献   

14.
通过光学显微镜观察试验钢的显微组织,利用万能试验机、摆锤冲击试验机和布氏硬度计分别检测试验钢的强度、塑性、冲击性能和硬度,研究了热处理工艺对60CrNiMo轧辊钢组织性能的影响。结果表明,400℃等温淬火时得到的贝氏体和珠光体的混合组织其强度和塑韧性较差;相比较于马氏体等温淬火+高温回火工艺,采用两相区亚温淬火,形成的铁素体和回火马氏体双相组织,可有效改善试验钢的力学性能,并且可以避免淬火裂纹的产生;试验钢经马氏体等温淬火+亚温淬火+高温回火热处理后其布氏硬度为318 HBW,规定塑性延伸强度(R_(p0.2))为797 MPa,抗拉强度为981 MPa,伸长率15%,断面收缩率为46%,室温冲击吸收能量达到66 J,各项性能指标均优于国家标准JB/T 6401—2017中的要求。  相似文献   

15.
对150 mm厚度连铸坯采用控轧-控冷轧制成20 mm钢板,通过淬火+回火热处理制备690 MPa级超高强海工钢。对比了高温淬火+回火、临界淬火+回火、两相区淬火+回火热处理工艺对690 MPa级超高强海工钢显微组织和力学性能的影响。结果表明:经临界淬火+高温短时回火后,海工钢组织由回火马氏体和板条铁素体组成,可以大幅降低屈强比。同时,海工钢保持良好屈服强度和抗拉强度,韧性和塑性不降低或者稍微降低。  相似文献   

16.
通过力学性能分析及显微组织观察,对比了淬火+回火(QT),一次两相区淬火+一次淬火+回火(LQT),一次淬火+一次两相区淬火+回火(QLT)三种热处理工艺对大厚度超高强度690 MPa级海洋工程用钢板组织性能的影响。结果表明,3种不同淬火+回火工艺对690 MPa级海洋工程用钢的低温冲击性能影响不同,其中采用一次淬火+回火工艺不能保证大厚度海洋工程钢板的低温冲击性能,尤其是不能保证钢板心部低温冲击性能,采用一次两相区淬火+一次淬火+回火(LQT)工艺能够一定程度提升钢板的低温冲击性能,一次淬火+两相区二次淬火+回火(QLT)工艺结果最理想,能够大幅度提高钢板的低温冲击性能,同时,还能够获得最好的强韧匹配,其中细化晶粒及适合的显微组织状态是决定钢板优良低温冲击性能的关键因素。  相似文献   

17.
对试验钢进行了不同的两相区直接淬火+回火处理。对试样显微组织进行了观察,并对力学性能进行了检测,研究了淬火温度和回火温度对试验钢组织和性能的影响。结果表明,钢板回火显微组织以多边形铁素体+岛状回火马氏体为主。随着直接淬火温度的升高,回火马氏体含量增加,铁素体含量减少,组织中少量珠光体逐渐转变为贝氏体;屈服强度和抗拉强度均升高,屈强比先保持恒定后有所升高,伸长率逐渐下降,冲击功则是先大幅降低后几乎不变。当回火温度低于400℃时,马氏体形态没有明显改变;当回火温度超过500℃时,马氏体岛开始分解,碳化物析出量增加。随着回火温度升高,抗拉强度几乎呈线性降低,屈服强度则先升高后降低,屈强比升高,伸长率和冲击功先下降后提高。  相似文献   

18.
采用中低碳+微合金设计,利用TMCP+回火工艺,开发了低屈强比的Q420qE桥梁用钢。利用扫描电镜(SEM)等试验手段,研究了试验钢力学性能和显微组织的关系。结果表明,中低碳成分条件下轧态均具有良好的屈强比,碳含量越低延伸性能越好,但是轧态组织中硬相组织如粒状贝氏体和M-A岛的存在不利于冲击性能的提高。回火处理会使轧态组织中第二相粒子析出,M-A岛软化分解,提高屈服强度,屈强比升高,冲击性能改善。低碳去B并添加适量的Cr-Mo成分,采用TMCP+中温回火处理,可使桥板获得良好的综合力学性能。  相似文献   

19.
对比了淬火+回火(QT),淬火+两相区淬火+回火(QLT)两种热处理工艺对高强度含铜船体钢组织性能的影响。结果表明,QLT工艺并未改变含铜高强船体钢的时效硬化行为;但大幅度提高了钢的低温韧性,使钢在较宽的回火温度范围内(550~650℃)获得高强度和高韧性的匹配;晶粒细化,双相组织和逆转变奥氏体的形成是两相区二次淬火提高低温韧性的主要原因。  相似文献   

20.
研究了调质工艺对低碳贝氏体型高强钢屈强比的影响.结果显示:当淬火温度进入两相区时,钢的屈强比显著降低,但强度指标也相应较低;完全奥氏体区淬火时,钢的抗拉强度和屈服强度均显著上升,且升高淬火温度虽能使屈强比有所降低,但始终处于较高的水平;在试验温度范围内,回火温度上升钢的屈服强度上升,抗拉强度连续降低,导致屈强比总体呈上升趋势,但回火温度较低时,碳化物的析出不明显,屈服强度的增加较少,故屈强比缓慢上升,升高回火温度,碳化物大量弥散析出,屈服强度显著增加,导致屈强比快速上升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号