首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Gleeble-3500热模拟机研究了06Cr25Ni20不锈钢在变形温度为950~1200℃,应变速率为0.5~50 s-1条件下的热压缩变形行为。通过线性回归分析确定06Cr25Ni20不锈钢的应变硬化指数以及变形表观激活能,获得06Cr25Ni20不锈钢高温条件下的流变应力本构方程,并验证该流变应力本构方程的准确性。研究结果表明,06Cr25Ni20不锈钢在热压缩变形过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度升高而降低。  相似文献   

2.
为研究不同工艺参数对汽轮机材料1Cr12Ni2W1Mo1V超临界钢高温变形行为的影响,在变形温度1000~1150℃,应变速率0.005~5 s~(-1)的条件下进行热压缩试验,得到了相应的真应力-真应变曲线。结果表明:1Cr12Ni2W1Mo1V超临界钢的高温流变应力对温度和应变速率比较敏感。通过双曲正弦本构方程和线性回归分析构建1Cr12Ni2W1Mo1V高温塑性变形的本构模型,并将流变应力的预测值与实验值进行比较,二者拟合程度高,表明该模型能较好描述该钢在热变形过程中的流动行为。  相似文献   

3.
为了研究铸态P91耐热合金钢的高温变形流变特性,建立铸态P91耐热合金钢高温流变应力本构方程,采用Gleeble-3500热模拟实验机对铸态P91耐热合金钢进行等温热压缩实验,研究了变形温度为900~1200℃、应变速率为0.01~5 s-1、变形量为60%条件下的热变形行为。研究结果表明,随着变形温度的升高和应变速率的降低,动态再结晶现象越容易发生,流变应力显著降低,曲线由加工硬化型向动态回复及动态再结晶型转变。在双曲正弦修正的Arrhenius型方程及Zener-Hollomon参数的基础上,考虑真应变对流动应力的影响,建立了铸态P91耐热合金钢的流变应力模型及本构方程。误差分析表明,所建立的本构方程具有良好的精度。  相似文献   

4.
采用Gleeble-3500热模拟试验机,在变形温度1073. 15~1273. 15 K,应变速率0. 001~1 s-1下进行了20Cr2Ni4A钢的等温压缩试验。结果表明,20Cr2Ni4A钢的流变应力随变形速率的增加或变形温度的降低而增加。基于峰值应力,分别采用表征参数和物理基参数构建了20Cr2Ni4A钢的Arrhenius型本构模型。结果表明,两种本构模型对峰值应力均具有良好的预测精度。通过对比分析考虑应变影响的两种本构模型,研究了两种本构模型在整个应变范围的预测能力。结果表明,在低应变区,表征参数本构模型的预测值更接近实测值。达到峰值应变后,物理基参数本构模型的预测值与表征参数本构模型的预测值十分接近,均能提供较高的预测精度。  相似文献   

5.
使用Gleeble-3180热模拟力学实验机采用单道次压缩方法研究了14Cr17Ni2马氏体不锈钢的高温形变行为。结果表明:随着变形温度的升高,应变速率降低,流变应力降低。14Cr17Ni2马氏体不锈钢的在高变形温度、低应变速率条件下,实验钢容易发生动再结晶,晶粒更细小均匀。根据加工硬化和动态软化的发生情况,获得了流变应力、应变速率、变形温度三者之间的关系,构建了14Cr17Ni2钢的高温本构方程。  相似文献   

6.
在Gleeble1500热模拟试验机上进行等温热模拟压缩试验,研究了热力参数(变形温度、变形速度和变形程度)对0Cr11Ni2MoVNb钢在变形温度950℃~1100℃、应变速率0.01~10s-1时的高温变形行为的影响。基于数理统计原理,科学分析并回归确定了合金在该温度范围下的变形激活能Q为429.48kJ/mol,应变速率敏感指数m为0.11059,得出了能综合反映热力参数对材料性能影响的本构方程。通过计算相关系数(R)和绝对误差的平均值(AARE)表明该本构有较好的精度,可对0Cr11Ni2MoVNb钢的流变应力进行很好的预测。  相似文献   

7.
30Cr3MoV钢热压缩流变应力行为研究   总被引:2,自引:0,他引:2  
利用Gleeble-3500进行热模拟压缩实验,对低合金钢30Cr3MoV在1173~1473 K变形温度以及0.1-10 s(-1)应变速率条件下的高温流变应力行为进行了研究.通过对真应力-真应变曲线进行分析得到该材料的形变激活能、流变应力本构方程以及峰值应变和峰值应力与变形温度、应变速率之间的关系方程.  相似文献   

8.
Cr20Ni32AlTi合金高温热变形行为研究   总被引:1,自引:1,他引:0  
采用Gleeble-3800热模拟试验机研究Cr20Ni32AlTi合金在不同温度和应变速率条件下的热变形行为及组织变化,讨论了热变形参数对流变应力和显微组织的影响.结果表明,在上述变形条件下,Cr20Ni32AlTi合金的高温热塑性良好,其软化机制与Zener-Hollomon(Z)参数有关,并建立了热变形本构方程,其应力指数为6.37,热变形激活能为491.032 kJ/mol.随Z参数增大,热变形峰值应力增加.  相似文献   

9.
采用Gleeble-3500热模拟试验机在变形温度700~1000℃、应变速率0.001~1 s~(-1)条件下进行了20Cr2Ni4A钢的等温压缩试验。结果表明,20Cr2Ni4A钢的流动应力随变形温度的降低或应变速率的增加而增加,其在700℃变形条件下的真实应力-应变曲线的变化规律异于其它变形温度,真实应力达到峰值后,以软化机制为主,但并未出现先强化后软化的单峰型应力-应变曲线。构建了20Cr2Ni4A钢的Johnson-Cook本构模型,并对应变速率敏感系数进行了修正,修正后的本构模型的适用范围为变形温度700~1000℃、应变速率0.001~0.1 s~(-1)。通过对热加工图的分析,确定的20Cr2Ni4A钢合理的热加工参数范围为:变形温度925~1000℃、应变速率0.001~0.05 s~(-1)。本研究可为20Cr2Ni4A钢热加工工艺参数的选择提供理论依据。  相似文献   

10.
通过20MnNiMo钢多组试样的热压缩实验获得应变速率为0.01~10 s-1、变形温度为1173~1473 K条件下的真应力-应变数据。结合Arrhenius双曲正弦本构方程,通过线性回归分析求解得到不同变形条件下本构模型中的热变形激活能Q,材料常数n、α及结构因子A,从而构建了用于表征20MnNiMo钢流变应力与应变量、温度、应变速率之间内在关系的本构方程。研究结果表明:20MnNiMo钢在热压缩变形过程中发生了明显的动态软化行为,流变应力水平随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与实验值较吻合,而且预测的最大相对误差仅为7.54%。  相似文献   

11.
采用Gleeble-3500热模拟试验机,研究了耐热钢2Cr12Ni4Mo3VNbN在变形温度为900~1200℃、应变速率为0.01~1 s-1、变形量为0.5条件下的热压缩变形行为和微观组织演化规律。基于真应力-真应变曲线分析不同变形温度和应变速率对试验钢热变形行为的影响,采用Arrhenius双曲正弦方程构建耐热钢2Cr12Ni4Mo3VNbN的流变应力本构模型,并结合动态材料模型(DMM)绘制了热加工图。结果表明,流变峰值应力随变形温度升高或应变速率下降而降低,在应变速率为0.1 s-1时,变形温度达到1000℃后开始出现再结晶,且随变形温度升高再结晶晶粒越大;在不同温度下组织中均发现有δ铁素体,其含量随温度升高而增加。结合热加工图和微观组织分析,确定了耐热钢2Cr12Ni4Mo3VNbN的最佳热加工区域为1068~1172℃, 0.08~0.12 s-1。  相似文献   

12.
5083铝合金热压缩变流变应力行为   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上,当变形温度为300~500 ℃、应变速率为0.01~10 s-1、真应变为0~0.8时,采用圆柱体等温热压缩实验研究5083铝合金变形流变应力行为.通过分析流变应力指数函数中系数A、β与应变的关系,建立Zener-Hollomon参数的指数关系本构方程.运用该本构方程对5083铝合金不同应变速率、变形温度及应变条件下的流变应力进行预测,发现流变应力预测值与温升修正值吻合得相当好.  相似文献   

13.
5083铝合金热压缩变形流变应力行为   总被引:4,自引:2,他引:4  
在Gleeble-1500热模拟机上,当变形温度为300-500℃、应变速率为0.01-10 s^-1、真应变为0-0.8时,采用圆柱体等温热压缩实验研究5083铝合金变形流变应力行为。通过分析流变应力指数函数中系数A、β与应变的关系,建立Zener-Hollomon参数的指数关系本构方程。运用该本构方程对5083铝合金不同应变速率、变形温度及应变条件下的流变应力进行预测,发现流变应力预测值与温升修正值吻合得相当好。  相似文献   

14.
采用放电等离子烧结(简称SPS)技术制备出Cu-10Cr复合材料,利用Gleeble-1500D热模拟试验机,对制备所得复合材料进行高温等温热压缩试验,变形温度为850℃和900℃、应变速率为0.001~1 s^(-1)、真应变量为0.55。结果表明:Cu-10Cr复合材料的流变应力随温度的升高和变形速率的降低而减小,具有典型的动态再结晶特征;利用流变应力、应变速率和变形温度的相关性,计算得出了该复合材料高温变形时应力指数n、应力参数α和结构因子A等参数,求得其热变形激活能Q并构建了流变应力本构方程。  相似文献   

15.
采用放电等离子烧结(简称SPS)技术制备出Cu-10Cr复合材料,利用Gleeble-1500D热模拟试验机,对制备所得复合材料进行高温等温热压缩试验,变形温度为850℃和900℃、应变速率为0.001~1 s~(-1)、真应变量为0.55。结果表明:Cu-10Cr复合材料的流变应力随温度的升高和变形速率的降低而减小,具有典型的动态再结晶特征;利用流变应力、应变速率和变形温度的相关性,计算得出了该复合材料高温变形时应力指数n、应力参数α和结构因子A等参数,求得其热变形激活能Q并构建了流变应力本构方程。  相似文献   

16.
采用Gleeble-3800热模拟试验机,在1000~1250℃温度范围,以0. 01~10 s~(-1)应变速率对Ni63W30Co5TiAl合金进行轴向热压缩试验,获得该合金的真应力-真应变曲线,并对Ni63W30Co5TiAl合金不同变形条件下的变形组织进行了系统观察与分析。结果表明,Ni63W30Co5TiAl合金流变曲线表现为典型的动态再结晶软化类型,流变应力随着应变速率的升高和变形温度的降低而逐渐增加;在1150~1200℃温度范围,Ni63W30Co5TiAl合金可获得细小均匀的等轴完全动态再结晶晶粒组织,而当变形温度高于1200℃时,合金的完全动态再结晶晶粒发生长大;另外,计算得到Ni63W30Co5TiAl合金的热变形激活能Q为398. 9403 kJ·mol~(-1),临界应变ε_c和稳态应变ε_s与ln Z近似呈线性增长关系。基于双曲正弦函数模型建立了Ni63W30Co5TiAl合金的峰值应力热变形本构方程。  相似文献   

17.
采用Gleeble3500热模拟试验机对95CrMo钢进行了等温单向热压缩试验,得到了其在应变速率为0.1、1和10 s-1,变形温度为750~1050℃时的流变应力曲线。结果表明,应变量、变形温度和应变速率对95CrMo钢流变应力的影响是通过动态回复和动态再结晶软化机制造成的,这种软化机制是三者共同作用的结果。基于试验结果,建立了一种同时考虑应变量补偿、变形温度补偿和应变速率补偿的95CrMo钢流变应力本构方程。从相关系数、平均相对误差和标准偏差3个方面将该方程与周纪华-管克制模型进行了对比,发现该本构方程相比周纪华-管克智模型具有更高的精度和可靠性,更适用于数值仿真领域。  相似文献   

18.
为建立能准确描述316L不锈钢流动特性的本构模型并合理制定其热成形工艺参数,采用圆柱试样在Gleeble-3500热模拟试验机上对316L奥氏体不锈钢进行等温压缩变形试验,研究316L不锈钢在变形温度为900℃~1 100℃、应变速率为0.01s-1~2s-1条件下的流变行为,建立其热变形本构方程。结果表明,变形温度和应变速率对流变应力有明显影响,流变应力随变形温度升高而降低,随应变速率的增加而升高。建立了材料常数α,n,lnA,及应变激活能Q与应变之间的非线性关系;316L不锈钢的热变形行为可用包含Arrhenius项考虑应变、应变速率及温度影响的本构方程描述。通过相关系数r、平均相对误差(AARE)对本构方程的准确性进行分析,结果表明,该方程可以准确预测316L不锈钢的高温流变行为。  相似文献   

19.
通过Gleeble-1500D数控动态热-力学模拟试验机对铸态C19400合金进行了高温等温热压缩试验,研究了该合金在变形温度700~950℃,应变速率0.001~10 s~(-1)条件下的高温变形行为。结果表明:在同一应变速率下,铸态C19400合金的流变应力随温度的升高而降低,在同一变形温度下,合金流变应力随应变速率的升高而升高。应变速率为0.001、0.01、0.1和1 s~(-1)时,动态软化以动态回复为主;应变速率为10 s~(-1)时,动态软化以动态再结晶为主,且再结晶程度随变形温度的升高而增加。此外,本文提出了一种基于MATLAB平台编程计算本构方程的方法,得到了基于Arrhenius双曲正弦本构关系的铸态C19400合金峰值流变应力本构方程,并计算得到该本构方程计算应力与试验应力的相对误差AARE为2.71%、相关系数R为0.9977,表明计算结果与试验结果高度吻合。  相似文献   

20.
采用Gleeble-3500热模拟试验机对Mg-3.0Nd-0.2Zn-0.4Zr(质量百分数,NZ30K)合金进行等温热压缩试验,变形温度范围为350~500℃,应变速率范围为0.001~1s-1。为消除变形热的影响,对高应变速率条件下的流变应力进行修正。利用修正后的流变应力数据,建立双曲正弦本构方程。双曲正弦本构方程中的常数可表达为应变的函数。利用建立的本构方程所预测的流变应力与实验结果吻合得较好,说明该本构方程可以用来预测NZ30K合金在热变形过程中的流变应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号