共查询到20条相似文献,搜索用时 93 毫秒
1.
针对配备双变量机构的静液压驱动车辆,以实现车辆最大加速能力为目标,对车辆加速过程变量机构控制策略和系统动态特性进行研究。首先从理论上分析实现车辆最大加速能力的驱动系统理想输出特性,得到泵、马达排量随马达转速的变化关系。进一步分析静液压驱动系统容积效率对车辆加速性能的影响,得到实际控制量与理论控制量之间的修正规律。为解决实际系统容积效率难以获取的难题,提出容积效率修正因子以及速比闭环反馈控制的方式,对泵和马达的理论排量进行修正,提出实现车辆最大加速能力的泵马达排量控制策略。通过仿真和试验对所提控制策略进行了验证,试验结果表明所提出的控制策略能够使车辆实现较好的加速性能,证明控制策略的可行性,具有较好的适应能力。 相似文献
2.
本文首先分析了国内外车辆液压驱动系统发展状况,重点展开对车辆的液压9区动系统进行了详细分析与仿真。首先对液压驱动系统的受力情况进行建模和分析,得出了受力关系式。然后以此为基础,建立了仿真模型,并对仿真模型进行了分析验证。结果表明分析结果与实际性能一致。 相似文献
3.
4.
5.
6.
针对液压驱动机械手的轨迹跟踪控制问题,在分析研究机械手动力学特点的基础上,推导出机械手的数学模型,分析了神经网络自适应控制的特点,提出了基于函数连接神经网络液压驱动机械手的自学习控制结构与控制算法。其控制结构着重智能知识的加强;控制算法以PD形成学习规则为基础,运算结果不是直接参与控制;而是根据控制器作用于系统之后所产生的误差及其微分对控制器作出评价和修正,仿真和实验研究证明了数学模型的有效性及控制方法的可行性。 相似文献
7.
合理配置系统各主要参数,是影响混合动力车辆制动性能及节能效果的关键问题。以轮边驱动液压混合动力车辆为原型,分析了轮边驱动液压混合动力车辆能量回收系统的工作原理,以原型车的1/4为基础,对辅助动力元件(蓄能器)、二次元件(液压泵/马达)的参数进行了理论分析;建立了能量回收系统的AMESim仿真模型,进行仿真分析;搭建了试验台架,开展试验验证。结果表明:在满足制动性能要求的前提下,增大蓄能器容积以及降低蓄能器最小工作压力有利于回收制动能量;二次元件的排量对制动性能的影响比较大,对制动能量的回收率影响很小;蓄能器工作压力越低,能量密度越大。 相似文献
8.
9.
针对多轴式液压辅助驱动系统的可靠性展开试验研究,利用现有专项试验设备,模拟液压驱动系统使用工况,制定元件可靠性试验方法,展开各项加载工况试验,进行耐久性测试.试验测试验证辅助驱动系统元件的可靠性,找出产品的薄弱环节,进行改进设计提升产品的可靠性. 相似文献
10.
基于规则的分布式电驱动车辆驱动系统失效控制 总被引:7,自引:0,他引:7
针对分布式电驱动车辆在进入失效控制工况下,传统控制策略存在的纵横向控制目标无法满足、驱动能力降低、安全性变差等缺点,设计并考虑动力性和稳定性的驱动系统失效协调控制策略。该策略利用分布式电驱动车辆各轮无机械连接、各轮独立驱动以及驱动单元冗余配置的结构特点,依据不同的失效状况和车辆状态制定基于规则的驱动系统失效控制算法。对所设计的算法进行实车试验验证,试验结果表明,在发生驱动系统失效后,所设计的基于规则的驱动失效控制策略通过协调控制各驱动轮驱动能力,在低速小转向阶段改善了车辆的纵向驱动能力,在高速或者大转向阶段保证了车辆的横向稳定性。 相似文献
11.
12.
针对摊铺机行驶驱动系统的特殊要求,重点研究恒速摊铺的控制问题.采用了模糊PID混合控制算法,利用Simulink对整个行驶驱动系统建立了数学模型并进行仿真分析,仿真结果表明采用模糊PID控制效果要优于传统PID控制. 相似文献
13.
14.
基于Matlab的装载机全液压行走控制系统的设计与优化 总被引:2,自引:1,他引:2
为更好地控制装载机全液压行走机构,设计了一套基于DSP的电液控制系统。为方便分析将系统分成两部分:阀控液压缸部分和泵控马达部分。根据实际设计需要选取元件,建立了阀控液压缸Matlab仿真模型,计算了传递函数。再将这部分作为一个单元加入整个系统的仿真模型。由于控制系统的功能均通过对液压马达转速的控制来实现,因此可通过马达的动态响应特性确定控制系统参数。利用Bode图计算控制系统的幅值裕度和相位裕度,再根据稳定性要求用Bode图计算控制参数,最后通过Simulink仿真验证和优化控制参数。 相似文献
15.
The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control. 相似文献
16.
17.
18.
19.
在液压传动中,液压马达作为执行元件对环境的保护有其特点;大扭矩液压马达以其低速稳定性、结构完善性、启动效率高、转动惯量小、使用时不需减速装置即可直接驱动、低速大扭矩负载等特点,得到广泛应用,因此油马达驱动主轴有其可行性. 相似文献