首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
应变率及CCVC界面层对CALL材料拉伸性能的影响   总被引:1,自引:0,他引:1  
用自行研制的旋转盘式杆杆型冲击拉伸装置实施了CFRP/Al超混杂复合材料(CALL)以及带有CCVC界面层的CALL冲击拉伸加载及加卸载试验;用岛津试验机测定了它们的准静态拉伸及层间剪切性能材料在准静态拉伸时,应力-应变曲线无明显的屈服点,呈脆性断裂;而冲击拉伸时,应力-应变曲线有明显屈服点,呈脆-韧性断裂,动态失稳应变是准静态的3—4倍无论是准静态拉伸还是冲击拉伸,CALL均存在明显的正混杂效应;CALL(CCVC)层间剪切强度比CALL约高10%;在同一应变率下,CALL(CCV)的拉伸强度及失稳应变均比CALL高.文中详细讨论以上试验现象,得出一些有意义的结论  相似文献   

2.
This article presents an experimental investigation of a ductile rubber-modified polypropylene. The behaviour of the material is investigated by performing tension, shear and compression tests at quasi-static and dynamic strain rates. Subsequently, scanning electron microscopy is used to analyse the fracture surfaces of the tension test samples, and to relate the observed mechanical response to the evolution of the microstructure. The experimental study shows that the material is highly pressure and strain-rate sensitive. It also exhibits significant volume change, which is mainly ascribed to a cavitation process which appears during tensile deformation. Assuming matrix-particle debonding immediately after yielding, the rubber particles might play the role of initial cavities. It is further found that the flow stress level is highly dependent on the strain rate, and that the rate sensitivity seems to be slightly more pronounced in shear than in tension and compression. From the study of the fracture surfaces it appears that the fracture process is less ductile at high strain rates than under quasi-static conditions.  相似文献   

3.
高强高模聚乙烯纤维力学性能的应变率和温度效应   总被引:2,自引:1,他引:1       下载免费PDF全文
利用MTS810材料试验机、旋转盘式杆-杆型冲击拉伸装置和温度控制箱,在温度20℃~110℃、应变率为0.001/s~700/s范围内,对高强高模聚乙烯纤维束进行了准静态和高应变率冲击拉伸实验,得到了不同温度、不同应变率时纤维束的应力-应变曲线。结果表明:高强高模聚乙烯纤维束的初始弹性模量具有应变率和温度相关的特性,随应变率提高而增加,随温度提高而下降;在常温下,破坏应力从准静态到动态,具有明显的应变率相关性,随应变率提高而增加,但在20℃~110℃范围内、高应变率下,对应变率变化不敏感;失稳应变也具有应变率和温度相关的特性,随应变率提高而减小,随温度提高而增大。在高应变率下,断裂应变能密度主要由初始弹性模量和失稳应变共同决定,受温度效应和应变率效应的综合影响。  相似文献   

4.
High-Performance Fiber-Reinforced Cementitious Composite (HPFRCC) materials exhibit strain hardening in uniaxial, monotonic tension accompanied by multiple cracking. The durability of HPFRCC materials under repeated loading makes them potentially suitable for seismic design applications. In this paper, the strain rate dependence of tensile properties of two HPFRCC materials in cylindrical specimens is reported from a larger study on strain rate effects in tension, compression and cyclic tension–compression loading. The cylindrical specimens were loaded in monotonic tension at strain rates ranging from quasi-static to 0.2 s−1. To evaluate the impact of specimen geometry on tensile response, coupon specimens loaded in monotonic tension under a quasi-static strain rate were compared to corresponding cylindrical specimens made from the same batch of material. Tensile strength and ductility of the HPFRCC materials were significantly reduced with increasing strain rate. Multiple cracking, strain hardening, strain capacity, and the shape of the stress–strain response were found to be dependent on specimen geometry. SEM images taken of the fracture plane of several specimens indicated that pullout and fracture of the fibers occurred for both HPFRCC materials studied here.  相似文献   

5.
An experimental technique is described for determination of dynamic tensile fracture strength of brittle solids. This technique has been used to determine the dynamic tensile fracture strength of several types of rock. The rocks studied were granite, limestone, and sandstone; the specimens were cored perpendicular to the bedding plane for these rocks. The quasi-static fracture strengths of the same solids were also determined for comparison with the dynamic strengths. The dynamic strengths have been found to be several times the quasi-static strengths, thus showing a strong dependence of fracture strength on strain rate.  相似文献   

6.
本文利用分子动力学的研究方法,采用了钛的嵌入式原子势,建立了沿[0001]晶向和[0110]方向拉伸模型,结果表明:两种方向的拉伸均包含弹性变形阶段、屈服阶段、颈缩阶段、断裂阶段.沿[0001]方向拉伸时,滑移系少,取向偏离软取向.变形时屈服强度为3.55GPa,屈服应变为0.063,断裂时的应变达到0.55.沿[01...  相似文献   

7.
The research dealt with the relation between damage and tension–tension fatigue residual strength (FRS) in a quasi-isotropic carbon fibre reinforced epoxy resin laminate. The work was organized in two phases: during the first one, composite laminates were damaged by means of an out-of-plane quasi-static load that was supposed to simulate a low velocity impact; in the second phase, fatigue tests were performed on damaged and undamaged specimens obtained from the original composite laminates. During the quasi-static transverse loading phase, damage progression was monitored by means of acoustic emission (AE) technique. The measurement of the strain energy accumulated in the specimens and of the acoustic energy released by fracture events made it possible to estimate the amount of induced damage and evaluate the quasi-static residual tensile strength of the specimens. A probabilistic failure analysis of the fatigue data, reduced by the relative residual strength values, made it possible to relate the FRS of damaged specimens with the fatigue strength of undamaged ones.  相似文献   

8.
高聚物纤维材料的高应变率响应行为研究   总被引:10,自引:0,他引:10  
利用MTS和旋转盘式杆-杆型冲击拉伸试验装置,在高应变率、大应变率范围条件下(Aramid:0.01/s-1000/s;PVA:0.01/s-1500/s),研究了应变率对芳纶纤维和高强PVA纤维束力学性能的影响;同时,利用扫描电子显微镜考察了纤维材料在不同应变率下的微观断裂机理。  相似文献   

9.
为了探究黄麻纤维束的尺寸效应和应变率敏感性,利用C43电子式万能试验机和CEAST 9340落锤试验冲击系统分别在静动载条件下对黄麻纤维束进行测试,获得了杨氏模量、强度、峰值应变和韧性随标距和应变率的变化关系静载试验在1/600s-1应变率条件下进行,测试了6组不同标距(25、50、100、150、200和300mm)的试件;动载试验以应变率为变量,在4组不同的应变率(40、80、120和160s-1)条件下进行了测试,试件标距均为25mm。测试结果表明:随着试件标距增大,杨氏模量初始增大,当标距大于100mm时趋于稳定;强度、峰值应变和韧性均减小。随着应变率增大,杨氏模量和强度均增大;峰值应变初始减小后趋于稳定;韧性先减小后增大。鉴于植物纤维束材料较大的性能离散性,采用Weibull分布对试验数据进行拟合,获得了黄麻纤维束强度在不同试验条件(标距和应变率)下的分布规律。  相似文献   

10.
Concrete structures are usually fractured under dynamic loadings, so it is important to have a clear knowledge of their dynamic behavior and tensile strength. First, the principle of one-dimensional (1D) stress wave reflection and superposition at free surface is briefed, and the spalling test method based on the Hopkinson bar is presented. Then, the attenuation law of stress wave is explored and the dynamic tensile/compressive moduli of concrete are evaluated according to the wave propagation experiment. Lastly, the influences of strain rate on the spalling tensile strength and failure patterns of concrete are further analyzed. The testing results demonstrate that the attenuation of stress wave accords with an exponential law when propagating in the concrete bar. The difference between the dynamic elastic moduli of concrete in tension and in compression is minor. Spalling tensile strength is sensitive to strain rate, and there is an obvious linear correlation between dynamic increase factor (DIF) and strain rate in a log-log plot for strain rate above 1.0/s; a single fracture occurs at low strain rate, while multiple fractures are detected with increasing strain rate.  相似文献   

11.
采用霍普金森杆拉伸技术研究了W丝体积分数为80%的W丝/Zr基非晶合金复合材料的动态拉伸性能,通过扫描电镜研究了该复合材料动态拉伸断裂模式.结果表明:随着打击速度增加,复合材料动态拉伸强度和断裂应变总体呈上升趋势;复合材料的动态拉伸断裂模式以钨丝解理断裂为主导,伴随非晶合金基体产生脉纹状花样和钨丝劈裂;脉纹状花样的形态不同于在动态压缩条件下所形成的,不存在"尖脊"形貌.  相似文献   

12.
Mechanical behaviour of carbon fibre/glass mat/polyester resin hybrid composites of sandwich construction is studied through tension, flexure, impact and post-impact tension tests. Tensile and flexural strength, modulus and failure strain values are compared to the calculated values. Total impact fracture energy and residual (after impact) tensile strength values of hybrid composites are analysed with regard to corresponding values of carbon/polyester composites. Failure of tested coupons was analysed by visual inspection and observation by scanning electron microscopy.  相似文献   

13.
In this paper, a new type of green reactive powder concrete (GRPC) with compressive strength of 200 MPa (C200 GRPC) is prepared by utilizing composite mineral admixtures, natural fine aggregates, short and fine steel fibers. The quasi-static mechanical properties (mechanical strength, fracture energy and fiber–matrix interfacial bonding strength) of GRPC specimens, cured in three different types of regimes (standard curing, steam curing and autoclave curing), are investigated. The experimental results show that the mechanical properties of the C200 GRPC made with the cementitious materials consisting of 40% of Portland cement, 25% of ultra fine slag, 25% of ultra fine fly ash and 10% of silica fume, 4% volume fraction of steel fiber are higher than the others. The corresponding compressive strength, flexural strength, fracture energy and fiber–matrix interfacial bonding strength are more than 200 MPa, 60 MPa, 30,000 J/m2 and 14 MPa, respectively. The dynamic tensile behavior of the C200 GRPC is also investigated through the Split Hopkinson Pressure Bar (SHPB) according to the spalling phenomena. The dynamic testing results demonstrate that strain rate has an important effect on the dynamic tensile behavior of C200 GRPC. With an increase of strain rate, the peak stress rapidly increases in the dynamic tensile stress–time curves. The C200 GRPC exhibits an obvious strain rate stiffening effect in the case of high strain rate. Finally, the mechanism of excellent static and dynamic properties gains of C200 GRPC is also discussed.  相似文献   

14.
为探究Kevlar 49单束的尺寸效应及应变率敏感性, 首先, 利用MTS万能试验机对不同标距(25、50、100、150、200和300 mm)的Kevlar 49单束进行了准静态(应变率为1/600 s-1)拉伸测试; 然后, 利用Instron落锤冲击系统对标距为25 mm的试样进行了动态(应变率为40~160 s-1)拉伸测试; 最后, 利用Weibull模型进行统计分析, 量化了不同标距和应变率下Kevlar 49单束拉伸强度的随机变化程度。结果表明: Kevlar 49单束的拉伸力学性能与标距和应变率有相关性; 拉伸强度随标距的增加而减小, 但随应变率的增加而增大; 峰值应变和韧性均随标距和应变率的增加而减小; 提取的Weibull参数可用于数值模拟及工程应用。   相似文献   

15.
Y. G. Wang  Z. X. Jiang  L. L. Wang 《Strain》2013,49(4):335-347
Experiments investigating dynamic tensile fracture were performed on the extruded rods of 2024‐T4 and 7075‐T6 aluminum alloys under varying loading conditions. The initial yield stress and fracture strain of 7075‐T6 alloy obtained in spilt Hopkinson tension bar tests are higher than that of 2024‐T4 alloy. But the initiation fracture toughness and spall strength of 2024‐T4 alloy are higher than those of 7075‐T6 alloy in three‐point bending and plate impact experiments, which indicates that 2024‐T4 alloy has better crack initiation tolerance and stronger spall failure resistance. Based on metallurgical investigations by using optical and scanning electron microscopes, it is revealed that the microstructure has a profound effect on the dynamic tensile fracture mechanism of each aluminum alloy. The 2024‐T4 alloy is relatively brittle due to voids or cracks nucleated at many coherent CuMgAl2 precipitate phases in the grain interiors, and the fracture mode is predominantly transgranular. The 7075‐T6 alloy exhibits relatively ductile fracture because voids or cracks growth is partly intergranular along the grain boundaries and partly transgranular by void formation around coarse intermetallic particles. The obvious differences of damage distribution and void coalescence mechanisms for 2024‐T4 and 7075‐T6 alloys under plate impact are also discussed.  相似文献   

16.
As the lightest metal material, magnesium alloy is widely used in the automobile and aviation industries. Due to the crashing of the automobile is a process of complicated and highly nonlinear deformation. The material deformation behavior has changed significantly compared with quasi-static, so the deformation characteristic of magnesium alloy material under the high strain rate has great significance in the automobile industry. In this paper, the tensile deformation behavior of AZ31B magnesium alloy is studied over a large range of the strain rates, from 700 s−1 to 3 × 103 s−1 and at different temperatures from 20 to 250 °C through a Split-Hopkinson Tensile Bar (SHTB) with heating equipment. Compared with the quasi-static tension, the tensile strength and fracture elongation under high strain rates is larger at room temperature, but when at the high strain rates, fracture elongation reduces with the increasing of the strain rate at room temperature, the adiabatic temperature rising can enhance the material plasticity. The morphology of fracture surfaces over wide range of strain rates and temperatures are observed by Scanning Electron Microscopy (SEM). The fracture appearance analysis indicates that the fracture pattern of AZ31B in the quasi-static tensile tests at room temperature is mainly quasi-cleavage pattern. However, the fracture morphology of AZ31B under high strain rates and high temperatures is mainly composed of the dimple pattern, which indicates ductile fracture pattern. The fracture mode is a transition from quasi-cleavage fracture to ductile fracture with the increasing of temperature, the reason for this phenomenon might be the softening effect under the high strain rates.  相似文献   

17.
为研究强动载荷下船用焊接钢板的力学性能。开展了典型船用焊接钢板母材、焊缝和热影响区的准静态拉伸试验、高温拉伸试验及SHPB动态压缩试验,分析了焊接钢板材料在不同应力状态下的力学行为,基于力学性能试验结果拟合了焊接钢板母材、焊缝和热影响区材料的本构模型。结果表明:准静态条件下,与母材相比,焊缝和热影响区材料的屈服强度与抗拉强度偏大,延伸率偏小;高应变率下,热影响区材料抵抗塑性变形的能力明显强于其他两种材料,且随着应变率的增加抵抗塑性变形的能力呈增强趋势;焊接板母材、焊缝与热影响区材料均表现出应变率效应和温度效应;热影响区是焊接板抗冲击性能相对薄弱的区域。建立的Johnson-Cook模型可以描述强动载荷下焊接钢板的力学性能。  相似文献   

18.
利用自行研制的旋转盘式杆杆型冲击拉伸试验装置于Fe3Al实施了不同应变率的冲击拉伸试验,获得了不同应变率下的完整的应力应变曲线,结果表明在应变率从80S^-1至1200S^-1范围内,Fe3Al存在明显的动态韧性现象及应变率强化效应,其屈服应力,破坏应力以及破坏应变都随应变率的提高而增加,用最小二乘法拟合得到其屈服应力,破坏应力以及失稳应变与应变率的关系,并根据Bondner-Parton的理论建  相似文献   

19.
碳/环氧树脂复合材料应变率效应的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
选择两种铺设方式( SS)的T300/Epoxy(炭纤维/环氧树脂)层合板, 利用MTS试验机以及Hopkinson拉伸杆分别对其进行了准静态拉伸试验(应变率为10-5~10-4 s-1)、 中应变率拉伸试验(应变率为100 ~101s-1)和高速冲击拉伸试验(应变率为102~104s-1)。静态、 动态实验的试件形状及尺寸均相同。获得了不同应变率加载条件下T300/Epoxy的应力-应变曲线。基于所获得的应力-应变曲线, 讨论了应变率对炭纤维增强复合材料力学性能的影响。研究结果表明: 复合材料T300/Epoxy是应变率相关的材料; 层合板的铺设方向对其应变率效应有着显著的影响; 随着应变率的增加, 材料的强度及弹性模量有较大程度的提高, 但破坏应变有所降低。通过对试验结果的数据拟合, 提出了材料应变率相关的动态本构模型。   相似文献   

20.
利用大直径(75 mm)分离式霍普金森拉杆(SHTB),对再生粗骨料取代率分别为0%、25%、50%、75%和100%的5组圆柱体再生混凝土试样进行应变率范围为100~102s-1的动态直接拉伸实验,研究再生混凝土的动态直接拉伸力学性能及其破坏形态。试验结果表明,再生混凝土的抗拉强度随平均应变率的增加而增大,而再生混凝土的破坏形态与平均应变率有关,这表明再生混凝土具有明显的率敏感性。在相同水灰比下,再生混凝土准静态拉伸强度比普通混凝土低1.3%~15.9%,动态拉伸强度比普通混凝土低1.7%~29%,此研究为再生混凝土的工程应用提供一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号