首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对热载荷作用下中心刚体与大变形薄板多体系统的动力学建模问题进行研究.基于Kirchhoff假设,从格林应变和曲率与绝对位移的非线性关系式出发,推导了非线性广义弹性力阵,用绝对节点坐标法建立了大变形矩形薄板的有限元离散的动力学变分方程.为了考虑刚体姿态运动、弹性变形和温度变化的相互耦合作用,推导了热流密度与绝对节点坐标之间的关系式.引入系统的运动学约束方程,建立了中心刚体-矩形板多体系统的考虑刚-柔-热耦合的热传导方程和带拉格朗日乘子的第一类拉格朗日动力学方程.为了有效地提高计算效率,将改进的中心差分法和广义-α法相结合,求解热传导方程和动力学方程,差分后的方程通过牛顿迭代法耦合求解.对刚-柔耦合和刚-柔-热三者耦合两种模型的仿真结果进行比较表明,刚体运动对温度梯度和热变形的影响显著.此外,本文建模方法考虑了几何非线性项,因此也考虑了热膨胀引起的轴向变形对横向变形的影响.  相似文献   

2.
The aim of this paper is to compare the accuracy of the absolute nodal coordinate formulation and the floating frame of reference formulation for the rigid-flexible coupling dynamics of a three-dimensional Euler–Bernoulli beam by numerical and experimental validation. In the absolute nodal coordinate formulation, based on geometrically exact beam theory and considering the torsion effect, the material curvature of the beam is derived, and then variational equations of motion of a three-dimensional beam are obtained, which consist of three position coordinates, two slope coordinates, and one rotational coordinate. In the floating frame of reference formulation, the displacement of an arbitrary point on the beam is described by the rigid-body motion and a small superimposed deformation displacement. Based on linear elastic theory, the quadratic terms of the axial strain are neglected, and the curvatures are simplified to the first order. Considering both the linear damping and the quadratic air resistance damping, the equations of motion of the multibody system composed of air-bearing test bed and a cantilevered three-dimensional beam are derived based on the principle of virtual work. In order to verify the results of the computer simulation, two experiments are carried out: an experiment of hub–beam system with large deformation and a dynamic stiffening experiment. The comparison of the simulation and experiment results shows that in case of large deformation, the frequency result obtained by the floating frame of reference formulation is lower than that obtained by the experiment. On the contrary, the result obtained by the absolute nodal coordinate formulation agrees well with that obtained by the experiment. It is also shown that the floating frame of reference formulation based on linear elastic theory cannot reveal the dynamic stiffening effect. Finally, the applicability of the floating frame of reference formulation is clarified.  相似文献   

3.
The main objective of the present paper is to determine the optimal trajectory of very flexible link manipulators in point-to-point motion using a new displacement approach. A new nonlinear finite element model for the dynamic analysis is employed to describe nonlinear modeling for three-dimensional flexible link manipulators, in which both the geometric elastic nonlinearity and the foreshortening effects are considered. In comparison to other large deformation formulations, the motion equations contain constant stiffness matrix because the terms arising from geometric elastic nonlinearity are moved from elastic forces to inertial, reactive and external forces, which are originally nonlinear. This makes the formulation particularly efficient in computational terms and numerically more stable than alternative geometrically nonlinear formulations based on lower-order terms. In this investigation, the computational method to solve the trajectory planning problem is based on the indirect solution of open-loop optimal control problem. The Pontryagin’s minimum principle is used to obtain the optimality conditions, which is lead to a standard form of a two-point boundary value problem. The proposed approach has been implemented and tested on a single-link very flexible arm and optimal paths with minimum effort and minimum vibration are obtained. The results illustrate the power and efficiency of the method to overcome the high nonlinearity nature of the problem.  相似文献   

4.
A three-dimensional computational finite element procedure for the vibration and dynamic stress analysis of the track link chains of off-road vehicles is presented in this paper. The numerical procedure developed in this investigation integrates classical constrained multibody dynamics methods with finite element capabilities. The nonlinear equations of motion of the three-dimensional tracked vehicle model in which the track link s are considered flexible bodies, are obtained using the floating frame of reference formulation. Three-dimensional contact force models are used to describe the interaction of the track chain links with the vehicle components and the ground. The dynamic equations of motion are first presented in terms of a coupled set of reference and elastic coordinates of the track links. Assuming that the structural flexibility of the track links does not have a significant effect on their overall rigid body motion as well as the vehicle dynamics, a partially linearized set of differential equations of motion of the track links is obtained. The equations associated with the rigid body motion are used to predict the generalized contact, inertia, and constraint forces associated with the deformation degrees of freedom of the track links. These forces are introduced to the track link flexibility equations which are used to calculate the deformations of the links resulting from the vehicle motion. A detailed three-dimensional finite element model of the track link is developed and utilized to predict the natural frequencies and mode shapes. The terms that represent the rigid body inertia, centrifugal and Coriolis forces in the equations of motion associated with the elastic coordinates of the track link are described in detail. A computational procedure for determining the generalized constraint forces associated with the elastic coordinates of the deformable chain links is presented. The finite element model is then used to determine the deformations of the track links resulting from the contact, inertia, and constraint forces. The results of the dynamic stress analysis of the track links are presented and the differences between these results and the results obtained by using the static stress analysis are demonstrated.  相似文献   

5.
研究温度场中旋转刚体-梁系统的刚-柔耦合动力学特性.考虑几何非线性和热效应,从精确的应变-位移关系式出发,用虚功原理和有限单元法建立了旋转刚体-梁系统的刚-柔耦合动力学方程.由于非线性刚度阵与变形的高次项有关,将非线性刚度阵的各元素表示为广义坐标阵和常值阵的乘积.数值计算表明,该方法可避免重复积分,提高计算效率.在此基础上研究了在温度递增的情况下几何非线性对系统的刚-柔耦合动力学特性的影响,用频谱分析方法研究了系统的固有频率随中心刚体转动惯量和温度的变化.  相似文献   

6.
Rigid-flexible coupling dynamics of three-dimensional hub-beams system   总被引:1,自引:0,他引:1  
In the previous research of the coupling dynamics of a hub-beam system, coupling between the rotational motion of hub and the torsion deformation of beam is not taken into account since the system undergoes planar motion. Due to the small longitudinal deformation, coupling between the rotational motion of hub and the longitudinal deformation of beam is also neglected. In this paper, rigid-flexible coupling dynamics is extended to a hub-beams system with three-dimensional large overall motion. Not only coupling between the large overall motion and the bending deformation, but also coupling between the large overall motion and the torsional deformation are taken into account. In case of temperature increase, the longitudinal deformation caused by the thermal expansion is significant, such that coupling between the large overall motion and the longitudinal deformation is also investigated. Combining the characteristics of the hybrid coordinate formulation and the absolute nodal coordinate formulation, the system generalized coordinates include the relative nodal displacement and the slope of each beam element with respect to the body-fixed frame of the hub, and the variables related to the spatial large overall motion of the hub and beams. Based on precise strain-displacement relation, the geometric stiffening effect is taken into account, and the rigid-flexible coupling dynamic equations are derived using velocity variational principle. Finite element method is employed for discretization. Simulation of a hub-beams system is used to show the coupling effect between the large overall motion and the torsional deformation as well as the longitudinal deformation. Furthermore, conservation of energy in case of free motion is shown to verify the formulation.  相似文献   

7.
8.
A co-rotational finite element formulation for the dynamic analysis of a planar curved Euler beam is presented. The Euler-Bernoulli hypothesis and the initial curvature are properly considered for the kinematics of a curved beam. Both the deformational nodal forces and the inertial nodal forces of the beam element are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory in element coordinates which are constructed at the current configuration of the corresponding beam element. An incremental-iterative method based on the Newmark direct integration method and the Newton-Raphson method is employed here for the solution of the nonlinear dynamic equilibrium equations. Numerical examples are presented to demonstrate the effectiveness of the proposed element and to investigate the effect of the initial curvature on the dynamic response of the curved beam structures.  相似文献   

9.
To consider large deformation problems in multibody system simulations afinite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates andtheir material derivatives are applied to represent both deformation andrigid body motion. The choice of nodal variables allows a fullynonlinear representation of rigid body motion and can provide the exactrigid body inertia in the case of large rotations. The methodology isespecially suited for but not limited to modeling of beams, cables andshells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler–Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.  相似文献   

10.
Nonlinear static and dynamic analysis of framed structures   总被引:2,自引:0,他引:2  
  相似文献   

11.
Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems.  相似文献   

12.
A new plane beam dynamic formulation for constrained multibody system dynamics is developed. Flexible multibody system dynamics includes rigid body dynamics and superimposed vibratory motions. The complexity of mechanical system dynamics originates from rotational kinematics, but the natural coordinate formulation does not use rotational coordinates, so that simple dynamic formulation is possible. These methods use only translational coordinates and simple algebraic constraints. A new formulation for plane flexible multibody systems are developed utilizing the curvature of a beam and point masses. Using absolute nodal coordinates, a constant mass matrix is obtained and the elastic force becomes a nonlinear function of the nodal coordinates. In this formulation, no infinitesimal or finite rotation assumptions are used and no assumption on the magnitude of the element rotations is made. The distributed body mass and applied forces are lumped to the point masses. Closed loop mechanical systems consisting of elastic beams can be modeled without constraints since the loop closure constraints can be substituted as beam longitudinal elasticity. A curved beam is modeled automatically. Several numerical examples are presented to show the effectiveness of this method.  相似文献   

13.
In this study, Reissner’s classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner’s beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes.  相似文献   

14.
In this study, the effect of the centrifugal forces on the eigenvalue solution obtained using two different nonlinear finite element formulations is examined. Both formulations can correctly describe arbitrary rigid body displacements and can be used in the large deformation analysis. The first formulation is based on the geometrically exact beam theory, which assumes that the cross section does not deform in its own plane and remains plane after deformation. The second formulation, the absolute nodal coordinate formulation (ANCF), relaxes this assumption and introduces modes that couple the deformation of the cross section and the axial and bending deformations. In the absolute nodal coordinate formulation, four different models are developed; a beam model based on a general continuum mechanics approach, a beam model based on an elastic line approach, a beam model based on an elastic line approach combined with the Hellinger–Reissner principle, and a plate model based on a general continuum mechanics approach. The use of the general continuum mechanics approach leads to a model that includes the ANCF coupled deformation modes. Because of these modes, the continuum mechanics model differs from the models based on the elastic line approach. In both the geometrically exact beam and the absolute nodal coordinate formulations, the centrifugal forces are formulated in terms of the element nodal coordinates. The effect of the centrifugal forces on the flap and lag modes of the rotating beam is examined, and the results obtained using the two formulations are compared for different values of the beam angular velocity. The numerical comparative study presented in this investigation shows that when the effect of some ANCF coupled deformation modes is neglected, the eigenvalue solutions obtained using the geometrically exact beam and the absolute nodal coordinate formulations are in a good agreement. The results also show that as the effect of the centrifugal forces, which tend to increase the beam stiffness, increases, the effect of the ANCF coupled deformation modes on the computed eigenvalues becomes less significant. It is shown in this paper that when the effect of the Poisson ration is neglected, the eigenvalue solution obtained using the absolute nodal coordinate formulation based on a general continuum mechanics approach is in a good agreement with the solution obtained using the geometrically exact beam model.  相似文献   

15.
Exact dynamic element stiffness matrix for the flexural–torsional free vibration analysis of the shear deformable thin-walled beam with non-symmetric cross-section on two-types of elastic foundation is newly presented using power series method based on the technical computing program Mathematica. For this, the shear deformable beam on elastic foundation theory is developed by introducing Vlasov's assumption and applying Hellinger–Reissner principle. This beam includes the shear deformation effects due to the shear forces and the restrained warping torsion and due to the coupled effects between them, and rotary inertia effects and the flexural–torsional coupling effects due to the non-symmetric cross-sections. And then equations of motion and force–deformation relations are derived from the energy principle and explicit expressions for displacement parameters are derived based on power series expansions of displacement components and the exact dynamic element stiffness matrix is determined using force–deformation relationships. In order to verify the accuracy of this study, the numerical solutions are presented and compared with the analytical solutions and the finite element solutions using the isoparametric beam elements. Particularly the influences of the coupled shear deformation on the vibrational behavior of non-symmetric beam on elastic foundation are investigated.  相似文献   

16.
17.
In this paper, a moving flexible beam, which incorporates the effect of the geometrically nonlinear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transverse deflections, the exact nonlinear strain-displacement relations for a beam element are described. The shear strains formulated by the present modeling method in this paper are zero, so it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange’s equations are employed for deriving the coupling dynamical formulations. The complete expression of the stiffness matrix and all coupling terms are included in the formulations. A model consisting of a rotating planar flexible beam is presented. Then the frequency and dynamical response are studied, and the differences among the zero-order model, first-order coupling model and the new present model are discussed. Numerical examples demonstrate that a ‘stiffening beam’ can be obtained, when more coupling terms of deformation are added to the longitudinal and transverse deformation field. It is shown that the traditional zero-order and first-order coupling models may not provide an exact dynamic model in some cases.  相似文献   

18.
The occurrence of strong deflections and major axial forces in many applications involving flexible multibodies entails including non-linear terms coupling deformation-induced axial and transverse displacements in the motion equation. The formulations, including such terms, are known as geometrically non-linear formulations. The authors have developed one such formulation that preserves higher-order terms in the strain energy function. By expressing such terms as a function of selected elastic coordinates, three stiffness matrices and two non-linear vectors of elastic forces are defined. The first matrix is the conventional constant-stiffness matrix, the second is the classical geometric stiffness matrix and the third is a second-order geometric stiffness matrix. The aim of this work is to define the third matrix and the two non-linear vectors of elastic forces by using the finite-element method.  相似文献   

19.
Multibody Dynamics of Very Flexible Damped Systems   总被引:2,自引:0,他引:2  
An efficient multibody dynamics formulation is presented for simulating the forward dynamics of open and closed loop mechanical systems comprised of rigid and flexible bodies interconnected by revolute, prismatic, free, and fixed joints. Geometrically nonlinear deformation of flexible bodies is included and the formulation does not impose restrictions on the representation of material damping within flexible bodies.The approach is based on Kane's equation without multipliers and the resulting formulation generates 2ndof+m first order ordinary differential equations directly where ndof is the smallest number of system degrees of freedom that can completely describe the system configuration and m is the number of loop closure velocity constraint equations. The equations are integrated numerically in the time domain to propagate the solution.Flexible bodies are discretized using a finite element approach. The mass and stiffness matrices for a six-degree-of-freedom planar beam element are developed including mass coupling terms, rotary inertia, centripetal and Coriolis forces, and geometric stiffening terms.The formulation is implemented in the general purpose multibody dynamics computer program flxdyn. Extensive validation of the formulation and corresponding computer program is accomplished by comparing results with analytically derived equations, alternative approximate solutions, and benchmark problems selected from the literature. The formulation is found to perform well in terms of accuracy and solution efficiency.This article develops the formulation and presents a set of validation problems including a sliding pendulum, seven link mechanism, flexible beam spin-up problem, and flexible slider crank mechanism.  相似文献   

20.
悬臂梁大变形的向量式有限元分析   总被引:1,自引:0,他引:1  
为分析悬臂梁的几何非线性行为,用向量式有限元法将结构离散成质点系以及质点间的连接单元.根据牛顿第二定律得到每个质点在内力和外载荷作用下的运动方程以及悬臂梁在每个时刻的变形用该时刻质点系的运动表示.结合刚架元的节点内力和等效质量得出质点位移的迭代计算公式,采用FORTRAN编制计算程序,对悬臂梁分别承受集中载荷和弯矩下的大变形进行算例分析.计算结果与理论解吻合较好,表明该方法能很好地模拟分析悬臂梁的大变形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号