首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using simple assumed deformation fields, approximate solutions have been obtained for tension and bending specimens containing welds for both limit loads and for fully plastic proportionality coefficients between the singular field amplitude J and the strain energy. The solutions allow for the degree of over or undermatch in the material tensile properties of the weld metal relative to the parent steel, and for the size of the weld region relative to the remaining ligament ahead of the crack. Detailed finite-element analyses have been performed for particular values of under/over-match and size of weld region. These refine the approximate analytical solutions for the particular cases examined, and show broad agreement with the trends predicted by the analytical models. The results have been used to provide guidance for testing weldments using standard, bend-type geometries. For small-specimen testing, cracks should be sufficiently deep for the remaining ligament ahead of a centrally located crack to be less than the total width of the weld. For large specimens, the weld region should be less than 20% of the size of the remaining ligament. If these guidelines are followed then standard relationships may be used to derive J from the area under the load-displacement curve. Common advice that the tensile properties of the weaker material in a weldment should be used in J-estimation techniques has been shown to be appropriate in many cases. However, the advice is likely to be overconservative when plastic deformation is predominantly in the weld even for overmatched weld properties, or predominantly in base metal even for undermatched weld properties. The results in the paper enable such cases to be identified.  相似文献   

2.
This paper describes the results of a series of finite element analyses performed to investigate the suitability of the coefficient of the J-CTOD relationship, dn, as a parameter to quantify constraint. Analyses have been performed which employ the modified boundary layer solution to demonstrate the relationship between the T-stress, Q and dn parameters. Analyses have also been performed to analyse the effects of constraint in strength mismatched welded three-point bend specimens. These results are compared with predictions of constraint made using values of dn derived from slip-line field solutions. Material strength overmatching is shown to cause a significant loss in constraint, whilst undermatching increases constraint. On the whole, predictions of the effects of constraint from slip-line field solutions are shown to agree with the measured constraint levels obtained using the finite element method, although the results from highly undermatched joints are not as accurate as the others examined. This is shown to be due to the effect of the base material outside the weld on the crack tip stress fields. By employing a two-material idealisation of the modified boundary layer formulation, using elastic T-stresses to model the constraint due to the specimen geometry and the normalised load parameter, J/hσYw, to control the size of the plastic zone relative to the thickness of the weld material, it was possible to reproduce the complex stress fields encountered in each of the specimens. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Two-dimensional, plane strain, finite element analyses of strength-mismatched welded joints have been performed using the modified boundary layer formulation. The welds were idealized as two-material joints with the material interface running parallel to the crack, which was embedded in the weld material. The Rousselier ductile damage model was employed within the weld material to simulate crack extension due to the growth and coalescence of microvoids. By analysing models with different levels of material mismatching, weld dimensions and applied T -stress levels, it was possible to analyse the effects of crack tip constraint due to both material mismatching and specimen geometry on the fracture resistance of the weld material.
The results show that material strength overmatching (where the weld material is stronger than the base material) reduces the level of constraint ahead of the crack, which can increase the resistance to fracture of the weld material. Conversely, material strength undermatching increases crack tip constraint, reducing the fracture resistance of the joint. By employing estimates for the crack tip constraint levels, Q M , based on the applied load, level of material mismatching and weld region thickness, it has been possible to 'order' the J– resistance curves of overmatched joints by generating a family of J–Q M loci which describe the effects of constraint on the fracture resistance of the weld material. However, it is shown that the Q M-stress parameter is not capable of describing the effect of material strength undermatching on the fracture resistance of a joint, which can be much lower than that obtained from a high-constraint homogeneous specimen of weld material.  相似文献   

4.
李忠献  刘永光 《工程力学》2006,23(11):91-98
主裂缝亚临界扩展所形成的虚拟裂缝区的粘聚力是影响混凝土断裂韧度尺寸相关性的重要因素。根据混凝土准脆性材料的断裂特性,建立了一种基于虚拟裂缝模型的求解混凝土等效断裂韧度的实用解析方法。首先根据复合材料力学和线弹性断裂力学的基本原理,将虚拟裂缝的粘聚力作为相应的边界条件,运用修正的剪滞理论,分区引入变异层,建立了分层剪滞模型;然后根据能量法则,推导出求解混凝土等效断裂韧度的解析计算模式;最后针对相关试验的数值解,得到了混凝土等效断裂韧度的解析解。结果表明,对于不同的子层数,体积系列试件的混凝土等效断裂韧度均方差和变异系数分别低于0.0398和0.0384,高度系列试件的混凝土等效断裂韧度均方差和变异系数分别低于0.0394和0.0363,从而证明了混凝土等效断裂韧度是与试件尺寸无关的断裂参数;且与数值解相比,解析解的均方差和变异系数更小,证明了本文解析方法具有更好的鲁棒性。由此得出结论,基于虚拟裂缝模型所建立的解析模式为求解混凝土等效断裂韧度提供了一种可靠的、实用的解析方法。  相似文献   

5.
An experimental study was conducted to assess the structural performance of repair welds in an ex-service 1Cr-1Mo-0.25V steam turbine casing material. Material from two weld techniques, one involving a post-weld heat-treatment that produced undermatched welds and the other involving a temper bead welding technique that produced overmatched welds were tested. Both welding techniques were implemented in two base metal conditions giving rise to four different welds and two different base metal conditions. The tests conducted included tensile tests, creep tests, fracture toughness tests, fatigue crack growth tests, creep crack growth tests, and creep-fatigue crack growth tests on the base metal, weld metal and the weldment region.The yield strength of the weld metal in the undermatched condition was approximately 10% lower than the base metal, while the weld metal in the overmatched condition had a yield strength that was 30% higher than the base metal at 565 °C. The creep deformation rates in the undermatched welds were 60 times faster than the base metal at a stress of 207 MPa. In the overmatched welds, the creep rates at 207 MPa were about 2.8 times faster in one case and 2.8 times slower in the other.The crack path in fracture toughness specimens followed the interface between the transition layer and the weaker of the weld metal and the base metal. The J-resistance curves for the weldments at 565 °C showed significant variability among duplicate samples from the same welds. This scatter was caused by the variability in the location of the precrack with respect to the fusion line and the location of the low fracture toughness region in the weldment. This behavior was explained using a novel approach for characterizing the fracture of welds. The creep-fatigue crack growth rates at equivalent (Ct)avg values in undermatched welds was higher than the crack growth rates in the overmatched weld samples. In all cases under creep-fatigue, the crack appeared to grow in the weaker of the base metal and the weld metal. Recommendations for future work are provided to enhance the theoretical underpinnings of the nonlinear fracture mechanics frame-work to rigorously address fracture and crack growth in welds.  相似文献   

6.
The effect of mechanical mismatching (ratio between the yield strength of base and weld metal) on the toughness of welded joints at different temperatures was analysed and the ductile-to-brittle transition curves of these welded joints were experimentally obtained. The filler metal of the joints was always the same, varying the base metal and the width of the welded zone. Two base metals were selected, one with a higher strength than the filler metal (undermatched joint) and the other with a lower strength than the filler metal (overmatched joint). In addition, the joints were made using two different weld widths, 20 and 10 mm.The fracture behaviour of the joints were determined at different temperatures using SE(B) specimens provided with short cracks (a/W = 0.22). Besides, long crack specimens (a/W = 0.5) were also used for comparison. In the case of overmatched joints, the J-values for ductile crack growth are larger than for the undermatched joints. In addition, the ductile-to-brittle transition curve is displaced towards lower-temperatures and higher-toughness values and the toughness for cleavage fracture is also larger for overmatching than for undermatching. All these effects are more significant as the weld width decreases and have been explained in terms of constraint modifications.  相似文献   

7.
The generally accepted conditions for the strength overmatched welded joints of high strength steel are not clearly defined. In this paper, the fracture mechanics analysis of specimens, with surface notch tips completely embedded in the heat affected zones was conducted. The results showed that the strength of mismatching of a welded joint caused a redirection of the crack propagation towards the low strength region of the welded joint. This redirection of the crack propagation affected the values of the critical CTOD. In the cases of the overmatched welded joints containing a soft root layer it is possible to achieve a comparable fracture behaviour related to the homogeneous overmatched welded joint if the impact toughness of the soft root layer is higher than the impact toughness of the overmatched weld metal. Such a type of welded joint is therefore preferable for the welding of high strength low alloy steels, because it enables the manufacturing of a welded joint without preheating.  相似文献   

8.
This paper presents numerical studies on strength mis-match effects in welded joints. Crack growth in a mis-matched single edge notched specimen under pure bending, with a crack lying at the center line of the weld metal, is simulated via a two-dimensional plane strain finite element analysis (FEA). The fracture process is modeled using a cohesive zone model (CZM). The work is focussed on the effects of yield strength mis-match as well as thickness of the weld metal on fracture resistance and load-deformation for both under- and overmatched specimens. Weld metal mis-match is achieved by keeping the same weld metal and changing the strength of the base metal. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
ABSTRACT A plane‐strain upper bound limit load solution for weld strength overmatched middle cracked tension specimens (M(T) specimens), is found. It is assumed that the weld material is isotropic, but the base material is orthotropic and its axes of orthotropy are straight and parallel to the axes of symmetry of the specimen. A quadratic orthotropic yield criterion is adopted. The solution is based on a simple discontinuous kinematically admissible velocity field and is an extension of the corresponding solution for the specimen made of isotropic materials. These two solutions are compared to demonstrate the influence of anisotropy on the magnitude of the limit load.  相似文献   

10.
A numerical investigation of the influence of specimen size on creep crack growth in cross‐weld CT specimens with material properties of 2.25Cr1Mo at 550 °C is performed. A three‐dimensional large strain and large displacement finite element study is carried out, where the material properties and specimen size are varied under constant load for a total of eight different configurations. The load level is chosen such that the stress intensity factor becomes 20 MPa √m regardless of specimen size. The creep crack growth rate is calculated using a creep ductility‐based damage model, in which the creep strain rate ahead of the crack tip perpendicular to the crack plane is integrated taking the degree of constraint into account. Although the constraint ahead of the crack tip is higher for the larger specimens, the results show that the creep crack growth (CCG) rate is higher for the smaller specimens than for the larger ones. This is due to much higher creep strain rates ahead of the crack tip for the smaller specimens. If, on the other hand, the CCG rate is evaluated under a constant C * condition, the creep crack growth rate is found to be higher for the larger specimens, except when the crack is located in a HAZ embedded in a material with a lower minimum creep strain rate; then, the creep crack growth rate is predicted to be higher for the smaller specimen. In view of these results, it is obvious that the size effect needs to be considered in assessments of defected welded components using results from CCG testing of cross‐weld CT specimens.  相似文献   

11.
Fatigue behavior of laser welds in lap-shear specimens of high strength low alloy (HSLA) steel is investigated based on experimental observations and two fatigue life estimation models. Fatigue experiments of laser welded lap-shear specimens are first reviewed. Analytical stress intensity factor solutions for laser welded lap-shear specimens based on the beam bending theory are derived and compared with the analytical solutions for two semi-infinite solids with connection. Finite element analyses of laser welded lap-shear specimens with different weld widths were also conducted to obtain the stress intensity factor solutions. Approximate closed-form stress intensity factor solutions based on the results of the finite element analyses in combination with the analytical solutions based on the beam bending theory and Westergaard stress function for a full range of the normalized weld widths are developed for future engineering applications. Next, finite element analyses for laser welded lap-shear specimens with three weld widths were conducted to obtain the local stress intensity factor solutions for kinked cracks as functions of the kink length. The computational results indicate that the kinked cracks are under dominant mode I loading conditions and the normalized local stress intensity factor solutions can be used in combination with the global stress intensity factor solutions to estimate fatigue lives of laser welds with the weld width as small as the sheet thickness. The global stress intensity factor solutions and the local stress intensity factor solutions for vanishing and finite kinked cracks are then adopted in a fatigue crack growth model to estimate the fatigue lives of the laser welds. Also, a structural stress model based on the beam bending theory is adopted to estimate the fatigue lives of the welds. The fatigue life estimations based on the kinked fatigue crack growth model agree well with the experimental results whereas the fatigue life estimations based on the structural stress model agree with the experimental results under larger load ranges but are higher than the experimental results under smaller load ranges.  相似文献   

12.
By means of finite element analyses of plane strain crack tip stress fields from homogeneous and heterogeneous modified boundary layer formulations, as well as homogeneous and mismatched full field solutions, a new constraint parameter βm has been established for overmatched welded joints, allowing the material mismatching effect on the crack tip stress fields to be quantified. In the case of complete specimens, both geometry and material mismatching affect the crack tip stress fields, and a total constraint parameter βT can be defined. This approach allows to quantify the stress fields directly from the values of the remote applied load.  相似文献   

13.
Creep crack growth tests were performed, at 650 °C, on compact tension (CT) specimens machined from the parent material and from the weld region of a P91 weldment. Parent material tests were performed on a number of different CT specimen designs in order to investigate the effects of side grooves on the shape of the crack front. Tests of CT specimens machined from the weld region were performed with the initial cracks located within the heat-affected zone (HAZ) along the interface with the parent material (i.e. the type IV position). All of the specimens were prepared with initial cracks created by wire spark erosion. Good correlations between creep crack growth rates and C were obtained for both the parent and type IV test results. The results indicate that the crack growth rates in the weld specimens are about four times higher than those of the parent material specimens, at the same C. Microstructural investigations of the fracture surfaces using SEM and hardness measurements have shown that the exact location of the initial crack within the weldment has a large effect on the crack growth rate, at various loading levels. The results of Finite Element (FE) analyses of the parent material specimen tests, using a creep continuum damage material model, compared favourably with those obtained from the experiments.  相似文献   

14.
Based on extensive two‐dimensional (2D) finite element (FE) analyses, the present work provides the plastic η factor solutions for fracture toughness J‐integral testing of heterogeneous specimens with weldments. Solutions cover practically interesting ranges of strength mismatch and relative weld width, and are given for three typical geometries for toughness testing: a middle cracked tension (M(T)) specimen, single edge cracked bend (SE(B)) specimen and (C(T)) specimen. For mismatched M(T) specimens, both plane strain and plane stress conditions are considered, whereas for SE(B) and C(T) specimens, only the plane strain condition is considered. For all cases, only deep cracks are considered, and an idealized butt weld configuration is considered, where the weld metal strip has a rectangular cross section. Based on the present solutions for the strength mismatch effect on plastic η factors, a window is provided, within which the homogeneous J estimation procedure can be used for weldment toughness testing. The effect of the weld groove configuration on the plastic η factor is briefly discussed, concluding the need for further systematic analysis to provide guidance to practical toughness testing.  相似文献   

15.
An implicit gradient application to fatigue of sharp notches and weldments   总被引:1,自引:0,他引:1  
This paper addresses the problem of stress singularities at the tip of sharp V-notches by means of a non-local implicit gradient approach. A non-local equivalent stress is defined as a weighted average of a local stress scalar quantity computed on the assumption of linear elastic material behaviour. In the case of a crack, we propose an analytical solution for the non-local equivalent stress at the crack tip when the local equivalent stress assumes the analytical form proposed by Irwin. For open notches, several numerical procedures are possible.For welded joints, we assume that the material obeys a linear elastic constitutive law. In this case, the non-local equivalent stress obtained from the implicit gradient approach is assumed as the effective stress for assessments of joint fatigue. Using the principal stress as local equivalent stress and a notch tip or weld toe radius equal to zero, we analyse many series of arc welded joints made of steel and subjected to either tensile or bending loading, and we propose a unifying fatigue scatter band. If the welded joints are subjected only to mode I loading, an analytical relationship between the relevant Notch Stress Intensity Factors (NSIF) of mode I and the effective stress is established; otherwise, the effective stress is evaluated by means of a simplified numerical analysis. For complex welded structures, however, a completely numerical solution is proposed; when different crack initiation sites are present (i.e. either weld toes or roots), the proposed approach correctly estimates the actual critical point.  相似文献   

16.
In this paper, three-dimensional finite element analyses for spot welds with ideal geometry in lap-shear specimens of different materials and thicknesses were first conducted. The computational results indicate that the stress intensity factor and J integral solutions based on the finite element analyses agree well with the analytical solutions and that the analytical solutions can be used with a reasonable accuracy. Three-dimensional finite element analyses based on the micrographs of an aluminum 6111 resistance spot weld, an aluminum 5754 spot friction weld, and a dissimilar Al/Fe spot friction weld were also conducted. The computational results indicate that the stress intensity factor and J integral solutions based on the finite element analyses for the aluminum 6111 resistance spot weld and aluminum 5754 spot friction weld with complex geometry are in good agreement with the analytical solutions for the equivalent spot welds with ideal geometry. However, the stress intensity factor and J integral solutions based on the finite element analysis for the Al/Fe spot friction weld with complex geometry are completely different from the analytical solutions for the equivalent spot weld with ideal geometry. Different three-dimensional finite element analyses based on the meshes that represent different features of the complex geometry of the Al/Fe spot friction weld were then conducted. The computational results indicate that the stress intensity factor and J integral solutions for the Al/Fe spot friction weld based on the finite element analysis agree reasonably well with the analytical solutions for the equivalent spot weld with consideration of gap and bend. The computational and analytical results suggest that the stress intensity factor and J integral solutions based on the finite element analysis and the analytical solutions with consideration of gap and bend may be used to correlate with the fatigue crack growth patterns of Al/Fe spot friction welds observed in experiments.  相似文献   

17.
Finite deformation finite element analyses of plane strain stationary and quasi-statically growing crack fields in fully incompressible elastic-ideally plastic material are reported for small-scale yielding conditions. A principal goal is to determine the differences between solutions of rigorous finite deformation formulation and those of the usual small-displacement-gradient formulation, and thereby assess the validity of the (nearly all) extant studies of ductile crack growth that are based on a small-displacement-gradient formulation. The stationary crack case with a significantly blunted tip is studied first; excellent agreement in stress characteristics at all angles about the crack tip and up to a radius of about three times the crack tip opening displacement is shown between Rice and Johnson's [1] approximate analytical solution and our numerical solution. Outside this radius, the numerical results agree very well with Drugan and Chen's [2] small-displacement-gradient analytical characteristics solution in the region of principal plastic deformation. Thus we identify accurate analytical representations for the stress field throughout the plastic zone of a blunted stationary crack. For the growing crack case, the macroscopic difference in crack tip opening profiles between previous small-displacement-gradient solutions and the present results is shown to be negligible, as is the difference in the stress fields in plastic regions. The stress characteristics again agree very well with analytical results of [2]. The numerical results suggest—in agreement with a recent analytical finite deformation study by Reid and Drugan [3]—that it is the finite geometry changes rather than the additional spin terms in the objective constitutive equation that cause any differences between the small-displacement-gradient and the finite deformation solutions, and that such differences are nearly indistinguishable for growing cracks.  相似文献   

18.
In this paper, analytical stress intensity factor and J integral solutions for resistance and friction stir spot welds without and with gap and bend in lap-shear specimens of different materials and thicknesses are developed. The J integral and stress intensity factor solutions for spot welds are first presented in terms of the structural stresses for a strip model. Analytical structural stress solutions for spot welds without and with gap and bend in lap-shear specimens are then developed based on the closed-form structural stress solutions for a rigid inclusion in a finite thin plate subjected to various loading conditions. With the available structural stress solutions, the analytical J integral and stress intensity factor solutions can be obtained as functions of the applied load, the elastic material property parameters, and the geometric parameters of the weld and specimen. The analytical stress intensity factor solutions are selectively validated by the results of three-dimensional finite element analyses for a spot weld with ideal geometry and for a friction stir spot weld with complex geometry, gap and bend. The stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of dissimilar magnesium, aluminum and steel sheets with equal and different thicknesses are then presented in the normalized forms as functions of the ratio of the specimen width to the weld diameter. Finally, general trends and simple estimation methods of the stress intensity factor and J integral solutions at the critical locations of spot welds in lap-shear specimens of different materials and thicknesses are given for convenient engineering applications.  相似文献   

19.
Abstract— Weld toe magnification factors are widely used in the evaluation of stress intensity factors for cracks in welded structures. Traditionally, the weld magnification factor has been determined from 2-D plane strain models containing edge cracks. However, it has long been recognised that a semi-elliptical weld toe crack cannot be accurately represented by a 2-D approximation due to the 3-D nature of the geometry. As a consequence, some recent research has been carried out using 3-D numerical modelling, which highlights the limitations of the 2-D approach. Nevertheless, 3-D solutions are still scarce and are of limited validity due to the difficulties associated with creating the numerical models. This paper reports the most extensive 3-D numerical investigation of semi-elliptical cracks in T-butt geometries to date. Based on the numerical results, new and accurate equations for weld magnification factors were derived, which quantify the 3-D effects present and emphasise the importance of the attachment. The results obtained from these equations are then used in an assessment of existing solutions.  相似文献   

20.
《Engineering Fracture Mechanics》2004,71(9-10):1435-1451
Local brittle zones (LBZ) cause the unstable fracture behaviour of weld metals. This threatens the safe service of welded structures and makes structural assessment procedures difficult. Therefore, the unstable fracture behaviour of an overmatched high strength low alloyed steel weldment was experimentally investigated. It showed that any interaction between two adjacent weld metal matrix and soft weld metal inclusions produces LBZ, causing local unstable fracture behaviour. The formation of a low hardness region is attributed to the multipass welding reheating process between Ac1 and the self-tempering temperature. The presence of partly solid metallic inclusions with a high content of alloying elements and pro-eutectoid ferrite microstructure were found to be additional causes for the local unstable fracture behaviour of the weld metal. Local strength mis-match induced the yielding and strain hardening in the soft weld metal inclusions, contributing significantly to unstable fracture behaviour. Thus, a significantly different scatter of experimental results can be obtained. In the cases of specimens with through-the-thickness crack, not only is the scatter significantly lower, but the toughness itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号