首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Ti/Ni(V)/Cu underbump metallization (UBM) is widely used in flip-chip technology today. The advantages of Ti/Ni(V)/Cu UBM are a low reaction rate with solder and the lack of a magnetic effect during sputtering. Sn atoms diffuse into the Ni(V) layer to form a Sn-rich phase, the so-called Sn-patch, during reflow and aging. In this study, the relationship between interfacial reaction and mechanical properties of the solder joints with Ti/Ni(V)/Cu UBM was evaluated. Sn-3.0Ag-0.5Cu solder was reflowed on sputtered Ti/Ni(V)/Cu UBM, and then the reflowed samples were aged at 125°C and 200°C, respectively. (Cu,Ni)6Sn5 was formed and grew gradually at the interface of the solder joints during aging at 125°C. The Sn-patch replaced the Ni(V) layer, and (Ni,Cu)3Sn4 was thus formed between (Cu,Ni)6Sn5 and the Sn-patch at 200°C. The Sn-patch, composed of Ni and V2Sn3 after reflow, was transformed to V2Sn3 and amorphous Sn during aging. Shear and pull tests were applied to evaluate the solder joints under various heat treatments. The shear force of the solder joints remained at 421 mN, yet the pull force decreased after aging at 125°C. Both the shear and pull forces of the solder joints decreased during aging at 200°C. The effects of aging temperature on the mechanical properties of solder joint were investigated and discussed.  相似文献   

2.
Ni underbump metallization (UBM) has been widely used as the diffusion barrier between solder and Cu pads. To retard the fast dissolution rate of Ni UBM, Cu was added into Ni thin films. The Ni-Cu UBM can provide extra Cu to the solders to maintain the Cu6Sn5 intermetallic compound (IMC) at the interface, which can thus significantly decrease the Ni dissolution rate. In this study, the Cu content of the sputtered Cu/Ni-xCu/Ti UBM was varied from 0 wt.% to 20 wt.%. Sn-3Ag-0.5Cu solder was reflowed with Cu/Ni-Cu/Ti UBM one, three, and five times. Reflow and cooling conditions altered the morphology of the IMCs formed at the interface. The amount of (Cu,Ni)6Sn5 increased with increasing Cu content in the Ni-Cu film. The Cu concentration of the intermetallic compound was strongly dependent on the composition of the Ni-Cu films. The results of this study suggest that Cu-rich Ni-xCu UBM can be used to suppress interfacial spalling and improve shear strength and pull strength of solder joints.  相似文献   

3.
The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1−x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1−x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1−y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1−y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016−1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.  相似文献   

4.
Intermetallic compounds (IMCs) growth on the Sn-8Zn-3Bi (-Cr) solder joints with Cu and electroplated Ni substrates was investigated after aging at 150 °C. It was found that the IMCs were the Cu5Zn8 and Ni5Zn21 at the solder/Cu and solder/Ni interface, respectively. The IMCs growth rate at the Sn-8Zn-3Bi-Cr/Cu and Ni interface was slower than that at Sn-8Zn-3Bi/Cu interface (about 1/2 times) and Sn-8Zn-3Bi/Ni interface (about 1/4 times) during aging. The reason may be that Cr reacts with Zn and forms the Sn-Zn-Cr phase which block the diffusion of Zn atom to the interface and slow down the IMCs growth rate.  相似文献   

5.
The effects of the fourth elements, i.e., Fe, Ni, Co, Mn and Ti, on microstructural features, undercooling characteristics, and monotonic tensile properties of Sn–3 wt.%Ag–0.5 wt.%Cu lead-free solder were investigated. All quaternary alloys basically form third intermetallic compounds in addition to fine Ag3Sn and Cu6Sn5 and exhibit improved solder structure. The precipitates of Sn–3Ag–0.5Cu (–0.1 wt.%X; X=Ni, Ti and Mn) alloy are very fine comparing with the other alloys. The effective elements for suppressing undercooling in solidification are Ti, Mn, Co and Ni. All quaternary bulk alloys exhibit similar or slightly larger tensile strengths; especially Mn and Ni can improve elongation without degrading strength. The interfacial phases of Sn–3Ag–0.5Cu (–0.1 wt.%X; X=Fe, Mn and Ti)/Cu joints are typical Cu6Sn5 scallops. Sn–3Ag–0.5Cu (–0.1 wt.%X; X=Ni and Co)/Cu joints form very fine Sn–Cu–Ni and Sn–Cu–Co scallops at interface. The Cu/Sn–3Ag–0.5Cu–0.1Ni/Cu joint exhibits improved tensile strength prior to thermal aging at 125 and 150 °C. The fracture surface of Cu/Sn–3Ag–0.5Cu/Cu joint exhibits mixture of ductile and brittle fractures, while Cu/Sn–3Ag–0.5Cu (–0.1X; X=Ni and Co)/Cu joints exhibit only brittle fracture at interface. The Sn–3Ag–0.5Cu–0.1Ni alloy is more reliable solder alloy with improved properties for all tests in the present work.  相似文献   

6.
The formation and growth of intermetallics at the interface between Sn-Ag-(Cu) alloy balls and Au/Ni-6P plating were experimentally examined as a function of soldering period. Joint strengths were also evaluated by a ball pull test. For the joint with Sn-3.5Ag, the primary reaction product of Ni3Sn4 exhibits growth and shrinkage in thickness repeatedly with a passage of reaction time up to 30 min, while the Ni3SnP reaction layer monotonously increases its thickness without fluctuation. In the cases of the joints with Cu bearing solder, Sn-3Ag-0.5Cu and Sn-3.5Ag-0.8Cu, a single η-(Cu,Ni)6Sn5 interface layer grows by fast Cu segregation from liquid solder to the interface layer on soldering. For all the soldered joints, a P-rich layer appears at the surface region of a Ni-6P plating layer by Ni depletion to form those intermetallic compounds at interfaces. The growth rate of a P-rich layer for Sn-3.5Ag is faster by about 4–8 times than those of the Sn-Ag-Cu. The presence of Cu in solder enhances the formation of the Cu6Sn5 intermetallic layer at the interface resulting in prevention of Ni diffusion to liquid solder. For all the soldered joints, coarsened reaction interfaces decrease the joint strengths.  相似文献   

7.
Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.  相似文献   

8.
The Sn3.5Ag0.75Cu (SAC) solder joint reliability under thermal cycling was investigated by experiment and finite element method (FEM) analysis. SAC solder balls were reflowed on three Au metallization thicknesses, which are 0.1, 0.9, and 4.0 μm, respectively, by laser soldering. Little Cu–Ni–Au–Sn intermetallic compound (IMC) was formed at the interface of solder joints with 0.1 μm Au metallization even after 1000 thermal cycles. The morphology of AuSn4 IMC with a small amount of Ni and Cu changed gradually from needle- to chunky-type for the solder joints with 0.9 μm Au metallization during thermal cycling. For solder joints with 4 μm Au metallization, the interfacial morphology between AuSn4 and solder bulk became smoother, and AuSn4 grew at the expense of AuSn and AuSn2. The cracks mainly occurred through solder near the interface of solder/IMC on the component side for solder joints with 0.1 μm Au metallization after thermal shock, and the failure was characterized by intergranular cracking. The cracks of solder joints with 0.9 μm Au metallization were also observed at the same location, but the crack was not so significant. Only micro-cracks were found on the AuSn4 IMC surface for solder joints with 4.0 μm Au metallization. The responses of stress and strain were investigated with nonlinear FEM, and the results correlated well with the experimental results.  相似文献   

9.
The interfacial reactions and failure modes of the solder joints for flip-chip light emitting diode (LED) on electroless nickel/immersion gold (ENIG) and Cu with organic solderability preservatives (Cu-OSP) surface finishes were investigated in this study. The experimental results demonstrate that the interfacial reactions in the Au/Sn–Ag–Cu(SAC)/ENIG and Au/SAC/Cu systems are different but the failure mechanisms of the two types of solder joints are similar during the shear test. For the Au/SAC/ENIG system, the Au layer on the surface finish of the diodes dissolved into the molten solder and transformed into a continuous (Au, Ni)Sn4 IMC layer at the diode/solder interface during reflow and the interfacial IMC at the solder/ENIG interface is dendritic Ni3Sn4 IMC grains which are surrounded by (Au, Ni)Sn4. For the Au/SAC/Cu system, however, no IMC layers can be observed at the diode/solder interface. The interfacial IMC at the solder/Cu interface is (Cu, Au)6Sn5 and a Cu3Sn IMC layer at the (Cu, Au)6Sn5/Cu interface. Tiny (Au, Cu)Sn4 IMC grains distribute in the solder layer and surround the (Cu, Au)6Sn5 grains. For the two types of systems, the primary failure mode for the cathode is due to the broken of the Si-based insulation layer which led to a high residue stress and poor connection between the Si-based layer and the solder layer. Meanwhile, the failure of the solder joint for the anode is mainly because of the failure of the solder layer under the conductive via. The crack generally forms at this area and then propagated along the diode or the diode/solder interface.  相似文献   

10.
Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015–1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.  相似文献   

11.
Growth of intermetallic compounds (IMC) at the interface of Sn–2.0Ag–2.5Zn solder joints with Cu, Ni, and Ni–W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu–Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni–W substrate, a thin Ni3Sn4 film was observed between the solder and Ni–W layer. During the aging process a thin layer of the Ni–W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.  相似文献   

12.
The interaction between Cu/solder interface and solder/Ni interface at a Cu/SnAgCu/NiAu sandwich solder joint with various surface finishes and solder heights was investigated. The interfacial microstructure and composition of intermetallic compounds (IMCs) were characterized by a scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX). The phase structure of IMC was identified by x-ray diffraction (XRD). It is found that ternary (Cu,Ni)6Sn5 IMCs form at both interfaces. The composition, thickness, and morphology of the ternary IMCs depend not only on the interface itself, but also on the opposite interface. That is to say, strong coupling effects exist between the two interfaces. Lattice parameters of (Cu,Ni)6Sn5 shrink with increasing Ni content, in agreement with Vegard’s law. The mechanism of ternary IMC formation and interface coupling effects are discussed in this paper.  相似文献   

13.
In the present study, several under bump metallization (UBM) schemes using either electroplated Ni or electroless Ni (EN) as the solderable layer are investigated. The EN and electroplated Ni are first deposited on Cu/Al2O3 substrates, followed by electroplating of thin gold coatings. Joints of 42Sn-58Bi/Au/EN/Cu/Al2O3 and 42Sn-58Bi/Au/Ni/Cu/Al2O3 are annealed at 145 C and 185CC for 30–180 minutes to investigate the interfacial reaction between the solder and metallized substrates. For 42Sn-58Bi/Au/Ni-5.5wt.%P/Cu/Al2O3, 42Sn-58Bi/Au/Ni-12.1wt.%P/Cu/Al2O3, and 42Sn-58Bi/Au/Ni/CU/Al2O3 joints annealed at 145 C, only Ni3Sn4 intermetallic compound (IMC) formed at the solder/EN interace. When annealed at an elevated temperature of 185 C, plate-like Ni3Sn4 IMC forms at the solder/Ni-5.5wt.%P interface, while a trace of (Ni, Cu)3Sn4 IMC is observed at the solder/Ni-12.1wt.%P interface and within the solder region. For the electroplated Ni-based multi-metallization substrate, the Ni3Sn4 IMC is present at the solder/Ni interface during annealing at 185 C for a short period of time. In the 42Sn-58Bi/Au/EN/Cu/Al2O3 joint, the EN spalls off the EN layer and migrates into the solder region when annealed at 185 C. The interface of the solder/electroplating Ni becomes saw-toothed as the annealing temperature is raised to 185 C. In addition, an enrichment of phosphorus is observed at the interface of the Ni-Sn IMC and EN.  相似文献   

14.
Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.  相似文献   

15.
This study was focused on the formation and reliability evaluation of solder joints with different diameters and pitches for flip chip applications. We investigated the interfacial reaction and shear strength between two different solders (Sn-37Pb and Sn-3.0Ag-0.5Cu, in wt.%) and ENIG (Electroless Nickel Immersion Gold) UBM (Under Bump Metallurgy) during multiple reflow. Firstly, we formed the flip chip solder bumps on the Ti/Cu/ENIG metallized Si wafer using a stencil printing method. After reflow, the average solder bump diameters were about 130, 160 and 190 μm, respectively. After multiple reflows, Ni3Sn4 intermetallic compound (IMC) layer formed at the Sn-37Pb solder/ENIG UBM interface. On the other hand, in the case of Sn-3.0Ag-0.5Cu solder, (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 IMCs were formed at the interface. The shear force of the Pb-free Sn-3.0Ag-0.5Cu flip chip solder bump was higher than that of the conventional Sn-37Pb flip chip solder bump.  相似文献   

16.
During the reflow process of Sn-8Zn-20In solder joints in the ball grid array (BGA) packages with Au/Ni/Cu and Ag/Cu pads, the Au and Ag thin films react with liquid solder to form γ3-AuZn4/γ-Au7Zn18 and ε-AgZn6 intermetallics, respectively. The γ3/γ intermetallic layer is prone to floating away from the solder/Ni interface, and the appearance of any interfacial intermetallics cannot be observed in the Au/Ni surface finished Sn-8Zn-20In packages during further aging treatments at 75°C and 115°C. In contrast, ε-CuZn5/γ-Cu5Zn8 intermetallics are formed at the aged Sn-8Zn-20In/Cu interface of the immersion Ag BGA packages. Bonding strengths of 3.8N and 4.0N are found in the reflowed Sn-8Zn-20In solder joints with Au/Ni/Cu and Ag/Cu pads, respectively. Aging at 75°C and 115°C gives slight increases of ball shear strength for both cases.  相似文献   

17.
The effects of adding a small amount of Cu into eutectic PbSn solder on the interfacial reaction between the solder and the Au/Ni/Cu metallization were studied. Solder balls of two different compositions, 37Pb-63Sn (wt.%) and 36.8Pb-62.7Sn-0.5Cu, were used. The Au layer (1 ± 0.2 μm) and Ni layer (7 ± 1 μm) in the Au/Ni/Cu metallization were deposited by electroplating. After reflow, the solder joints were aged at 160°C for times ranging from 0 h to 2,000 h. For solder joints without Cu added (37Pb-63Sn), a thick layer of (Au1−xNix)Sn4 was deposited over the Ni3Sn4 layer after the aging. This thick layer of (Au1−xNix)Sn4 can severely weaken the solder joints. However, the addition of 0.5wt.%Cu (36.8Pb-62.7Sn-0.5Cu) completely inhibited the deposition of the (Au1−xNix)Sn4 layer. Only a layer of (Cu1-p-qAupNiq)6Sn5 formed at the interface of the Cu-doped solder joints. Moreover, it was discovered that the formation of (Cu1-p-qAupNiq)6Sn5 significantly reduced the consumption rate of the Ni layer. This reduction in Ni consumption suggests that a thinner Ni layer can be used in Cu-doped solder joints. Rationalizations for these effects are presented in this paper.  相似文献   

18.
The effects of minor Ni addition (0.05 wt.%) on the microstructures and mechanical reliability of the lead-free solder joints used in the pin through hole (PTH) components were carefully investigated using a scanning electron microscope (SEM), a field-emission electron probe x-ray microanalyzer, and a pull tester. The PTH walls (i.e., Cu) of printed circuit boards (PCBs) were coated with organic solderability preservative (OSP) or electroless nickel/immersion gold (ENIG) surface finish before soldering. During soldering, the pins of the electronic components were first inserted into the PTHs deposited with OSP or ENIG, and then joined using a Sn–3Ag–0.5Cu (SAC) solder bath through a typical wave-soldering process. After wave soldering, a rework (the second wave soldering) was performed, where an SAC or Sn–0.7Cu–0.05Ni (SCN) solder bath was employed. The SCN joints were found to possess a higher tensile strength than the SAC ones in the OSP case. The sluggish growth of Cu3Sn, along with few Kirkendall voids at the solder/Cu interface caused by minor Ni addition into the solder alloy (i.e., SCN), was believed to be the root cause responsible for the increase in the strength value. However, the mechanical strength of the PTH components was revealed to be insensitive to the solder composition in the alternative case where an ENIG was deposited over the PTH walls. The implication of this study revealed that minor addition of Ni into the solder is beneficial for the solder/Cu joints, but for the solder/Ni(P) joints.  相似文献   

19.
Bi-Ag合金是一种替代高铅钎料的芯片封装无铅焊料。研制了Bi-2.5Ag、Bi-2.5Ag-0.1RE、Bi-5Ag-0.1RE、Bi-7.5Ag-0.1RE、Bi-10Ag、Bi-10Ag-0.1RE钎料。结果表明,该合金系钎料的熔化温度范围随Ag含量的增加而增大,而且其润湿性能良好,润湿角都处于30o~40o。不同Ag含量的Bi-Ag/Cu接头在界面处发生断裂,剪切强度差别不大,都略大于30MPa。Bi-Ag/Cu界面没有金属间化合物形成,结合强度较弱。  相似文献   

20.
To obtain the desired performance of Pb-free packages in mechanical tests, while the solder composition should be carefully selected, the influence of metals dissolved from the soldering pad or under bump metallization (UBM) should also be taken into account. Dissolved metals such as Cu can alter the intermetallic compound (IMC) formation, not only at the local interface but also on the other side of the joint. The high rate of interfacial cracking of Sn-Ag-Cu solder joints on Ni/Au-plated pads is attributed to the high stiffness of the solder and the dual IMC structure of (Cu,Ni)6Sn5 on Ni3Sn4 at the interface. Approaches to avoid this dual IMC structure at the interface are discussed. A rule for selecting the solder alloy composition and the pad surface materials on both sides of the joints is proposed for ball grid array (BGA) packages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号