共查询到18条相似文献,搜索用时 78 毫秒
1.
基于数据的贝叶斯网络结构学习是一个NP难题.基于条件约束和评分搜索相结合的方法是贝叶斯网络结构学习的一个热点.基于互信息理论提出一种最大支撑树(MWST)机制,并基于最大支撑树结合贪婪搜索的思想提出一种简化贪婪算法.简化贪婪算法不依赖先验知识,完全基于数据集.首先,通过计算互信息建立目标网络的最大支撑树;然后,在最大支撑树的基础上学习初始网络结构,最后,利用简化搜索机制对初始结构进一步优化,最终完成贝叶斯网络的结构学习.数据仿真实验证明,简化贪婪算法不仅具有很高的精度而且具有高效率. 相似文献
2.
3.
陈一虎 《计算机工程与应用》2012,48(13):39-43,52
结构学习是贝叶斯网络的重要分支之一,而由数据学习贝叶斯网络是NP-完全问题,提出了一个由数据学习贝叶斯网络的改进算法。该算法基于互信息知识构造初始无向图,并通过条件独立测试对无向边添加方向;同时提出了一个针对4节点环和5节点环的局部优化方法来构造初始框架,最后利用贪婪搜索算法得到最优网络结构。数值实验结果表明,改进的算法无论是在BIC评分值,还是在结构的误差上都有一定的改善,并且在迭代次数、运行时间上均有明显降低,能较快地确定出与数据匹配程度最高的网络结构。 相似文献
4.
针对爬山法容易陷入局部最优,而随机重复爬山法时间开销过大的问题,将互信息与爬山法相结合,提出了MI&HC贝叶斯网络结构学习算法。首先利用互信息构建初始网络结构,再从该网络结构开始利用爬山法进行贝叶斯网络结构学习。仿真结果表明:MI&HC算法,对小型稀疏网络结构的学习效果非常好,对较大型的网络结构的学习也能得到令人满意的结果;该算法不需要节点顺序这一先验信息,却能获得与K2算法相当的学习效果。 相似文献
5.
6.
针对K2算法依赖最大父节点数和节点顺序的不足,提出了一种改进的贝叶斯网络结构学习算法(MWST-CS-K2)。该算法先通过构造最大支撑树(MWST)得到最大父节点数;再利用变量间的关联度和更新系数对加边、减边和反转边进行规则设定,通过改进的布谷鸟算法对鸟巢位置进行寻优,应用广度优先搜索策略搜索遍历得到节点顺序;最后将最大父节点数和节点顺序作为K2算法的输入搜索得到最终网络。实验表明,所提出的MWST-CS-K2算法在标准的ASIA、SACHS和CHILD网络数据测试中的平均正确边比率分别达到了97.3%、87.7%和95.6%,学习效果优于其他对比算法,获得的网络结构和标准的网络结构最为相似。 相似文献
7.
贝叶斯网络结构学习分析 总被引:5,自引:0,他引:5
贝叶斯网络结构学习(以下简称结构学习)的目标是寻找对先验知识和数据拟合得最好的网络结构。结构学习有两种方式,一种是模型选择,即选择一个最好的网络结构;另一种是选择性的模型平均,即选择合适数量的网络结构,以这些网络结构代表所有的网络结构。我们从限定的结构学习与非限定的结构学习两类 相似文献
8.
9.
贝叶斯网络分类器的精确构造是NP难问题,使用K2算法可以有效地缩减搜索空间,提高学习效率。然而K2算法需要初始的节点次序作为输入,这在缺少先验信息的情况下很难确定;另一方面,K2算法采用贪婪的搜索策略,容易陷入局部最优解。提出了一种基于条件互信息和概率突跳机制的贝叶斯网络结构学习算法(CMI-PK2算法),该算法首先利用条件互信息生成有效的节点次序作为K2算法的输入,然后利用概率突跳机制改进K2算法的搜索过程来提高算法的全局寻优能力,学习较为理想的网络结构。在两个基准网络Asia和Alarm上进行了实验验证,结果表明CMI-PK2算法具有更高的分类精度和数据拟合程度。 相似文献
10.
贝叶斯网络结构学习是个NP难题。一种有效且准确性较高的学习算法是K2算法。但K2算法要确定结点次序,在无先验信息时受到很大限制。提出了一种启发式结构学习G算法,该算法以学习树扩展朴素贝叶斯TAN结构作为启发式信息,由该启发式信息生成结点次序,再用K2算法生成贝叶斯网络结构。实验结果表明,G算法可以解决无先验信息时确定结点次序的问题。所添加的弧比较简洁,网络结构比TAN结构更加合理。 相似文献
11.
基于互信息可信度的贝叶斯网络入侵检测研究 总被引:2,自引:0,他引:2
传统贝叶斯入侵检测算法没有考虑不同属性和属性权值对入侵检测结果的影响,因此分类准确率不够高.针对传统贝叶斯入侵检测算法存在的不足,提出基于互信息可信度的贝叶斯网络入侵检测算法.在综合考虑网络入侵检测数据特点和传统贝叶斯分类算法优点的基础上,用互信息相对可信度进行特征选择,删除一些冗余属性,把互信息相对可信度作为权值引进贝叶斯分类算法中,得到优化的贝叶斯网络入侵检测算法(MI-NB).实验结果表明,MI-NB算法能大大降低分类数据的维数,比传统贝叶斯入侵检测算法及改进算法有更高的分类准确率. 相似文献
12.
个性化信息服务越来越成为信息检索领域研究的热点.将贝叶斯网络和互信息相结合,用于个性化检索的用户建模中,建立了一个能同时表达特征词的统计分布和特征词间的语义相关性的用户模型.模型以贝叶斯网络结构为框架,包含了特征词的概率统计信息和特征词间互信息,并引入了时间机制.实验结果表明,用该模型进行信息检索,在查全率和查准率方面都得到了提高. 相似文献
13.
As is well known, greedy algorithm is usually used as local optimization method in many heuristic algorithms such as ant colony optimization, taboo search, and genetic algorithms, and it is significant to increase the convergence speed and learning accuracy of greedy search in the space of equivalence classes of Bayesian network structures. An improved algorithm, I-GREEDY-E is presented based on mutual information and conditional independence tests to firstly make a draft about the real network, and then greedily explore the optimal structure in the space of equivalence classes starting from the draft. Numerical experiments show that both the BIC score and structure error have some improvement, and the number of iterations and running time are greatly reduced. Therefore the structure with highest degree of data matching can be relatively faster determined by the improved algorithm. 相似文献
14.
15.
The quality of business information can significantly affect the operation level of enterprise. This paper analyses the problem
of business information retrieval (BIR). A Bayesian Network Based business information retrieval model (BN-BIRM) is proposed
by means of Bayesian network (BN) and information retrieval (IR) theory and a method for query adaptation is presented. In
this model the customized query requirement of enterprise (CQR) is expressed in terms of the predefined illustrative documents
related to business domain. The similarities between the documents and the query are evaluated with the conditional probabilities
among the nodes in the BN. In the experiments, BN-BIRM is compared with the Belief Network model based on vector space model
(VSM) ranking strategy and the Inference Network model based on TF-IDF ranking strategy. The experimental results show that
BN-BIRM is effective for collecting business information on a large scale.
相似文献
Zheng WangEmail: |
16.
Teruko Takada 《Data mining and knowledge discovery》2012,24(1):78-102
The behavior of events that occur infrequently but have a large impact tends to differ from that of the central tendency, and identifying the tail dependence structure among key factors is critical for controlling risks. However, due to technical difficulties, conventional analyses of dependence have focused on the global average dependence. This article proposes a novel approach for analyzing the entire structure of nonlinear dependence between two data sets on the basis of accurate pointwise mutual information estimation. The emphasis is on fat-tailed distributions that tend to appear in events involving sudden large changes. The proposed pointwise mutual information estimator is sufficiently robust and efficient for exploring tail dependence, and its good performance was confirmed in an experimental study. The significance of the identified dependence structure was assessed using the proposed bootstrap procedure. New facts were discovered from its application to daily returns and volume on the New York stock Exchange (NYSE) Composite Index. 相似文献
17.
基于信息论的Bayesian网络结构学习算法研究 总被引:3,自引:0,他引:3
Bayesian网是一种进行不确定性推理的有力工具,它结合图型理论和概率理论,可以方便地表示和计算我们感兴趣的事件概率,同时也是对实体之间依赖关系提供了一种紧凑、直观、有效的图形表示。文中基于信息论中测试信息独立理论,对Bayesian网中各结点进行条件独立(CI)测试,以发现各结点的条件依赖关系,并通过计算结点之间的互相依赖度以发现Bayesian网边的方向,从而构造Bayesian网结构,算法的计算复杂度只需要进行O(N2)次CI测试。 相似文献
18.
为了得到正确的节点次序,构造接近最优的贝叶斯网络结构,利用最大信息系数与条件独立性测试相结合的方法,提出了一种新的贝叶斯网络结构学习算法(MICVO)。该算法利用最大信息系数衡量变量之间的依赖关系,生成初始的无向图,引入惩罚因子δ减少图中冗余边的数量,并将这个无向图分解成多个子结构,确定图中边的方向,最后生成正确的节点次序作为K2算法的输入学习网络结构。在两个基准网络Asia和Alarm中进行实验验证,结果表明基于最大信息系数的贝叶斯网络结构学习算法可以得到接近最优的节点次序,学习到的网络结构与数据的拟合程度更好,分类准确性更高。 相似文献