首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We derive a general upper bound of the \(R_h\) -restricted connectivity for the arrangement graph, namely the minimum cardinality of a vertex set, whose removal disconnects the graph, but every remaining vertex has at least \(h ({\ge }0)\) neighbors in the survival graph. We show that this upper bound is exact when \(h \in [0, 2]\) and provide an asymptotic lower bound for the cases where \(h\ge 3\).  相似文献   

2.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

3.
A new weak Galerkin (WG) finite element method is developed and analyzed for solving second order elliptic problems with low regularity solutions in the Sobolev space \(W^{2,p}(\Omega )\) with \(p\in (1,2)\). A WG stabilizer was introduced by Wang and Ye (Math Comput 83:2101–2126, 2014) for a simpler variational formulation, and it has been commonly used since then in the WG literature. In this work, for the purpose of dealing with low regularity solutions, we propose to generalize the stabilizer of Wang and Ye by introducing a positive relaxation index to the mesh size h. The relaxed stabilization gives rise to a considerable flexibility in treating weak continuity along the interior element edges. When the norm index \(p\in (1,2]\), we strictly derive that the WG error in energy norm has an optimal convergence order \(O(h^{l+1-\frac{1}{p}-\frac{p}{4}})\) by taking the relaxed factor \(\beta =1+\frac{2}{p}-\frac{p}{2}\), and it also has an optimal convergence order \(O(h^{l+2-\frac{2}{p}})\) in \(L^2\) norm when the solution \(u\in W^{l+1,p}\) with \(p\in [1,1+\frac{2}{p}-\frac{p}{2}]\) and \(l\ge 1\). It is recovered for \(p=2\) that with the choice of \(\beta =1\), error estimates in the energy and \(L^2\) norms are optimal for the source term in the sobolev space \(L^2\). Weak variational forms of the WG method give rise to desirable flexibility in enforcing boundary conditions and can be easily implemented without requiring a sufficiently large penalty factor as in the usual discontinuous Galerkin methods. In addition, numerical results illustrate that the proposed WG method with an over-relaxed factor \(\beta (\ge 1)\) converges at optimal algebraic rates for several low regularity elliptic problems.  相似文献   

4.
We construct two sets of incomplete and extendible quantum pure orthogonal product states (POPS) in general bipartite high-dimensional quantum systems, which are all indistinguishable by local operations and classical communication. The first set of POPS is composed of two parts which are \(\mathcal {C}^m\otimes \mathcal {C}^{n_1}\) with \(5\le m\le n_1\) and \(\mathcal {C}^m\otimes \mathcal {C}^{n_2}\) with \(5\le m \le n_2\), where \(n_1\) is odd and \(n_2\) is even. The second one is in \(\mathcal {C}^m\otimes \mathcal {C}^n\) \((m, n\ge 4)\). Some subsets of these two sets can be extended into complete sets that local indistinguishability can be decided by noncommutativity which quantifies the quantumness of a quantum ensemble. Our study shows quantum nonlocality without entanglement.  相似文献   

5.
We study mutually unbiased maximally entangled bases (MUMEB’s) in bipartite system \(\mathbb {C}^d\otimes \mathbb {C}^d (d \ge 3)\). We generalize the method to construct MUMEB’s given in Tao et al. (Quantum Inf Process 14:2291–2300, 2015), by using any commutative ring R with d elements and generic character of \((R,+)\) instead of \(\mathbb {Z}_d=\mathbb {Z}/d\mathbb {Z}\). Particularly, if \(d=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}\) where \(p_1, \ldots , p_s\) are distinct primes and \(3\le p_1^{a_1}\le \cdots \le p_s^{a_s}\), we present \(p_1^{a_1}-1\) MUMEB’s in \(\mathbb {C}^d\otimes \mathbb {C}^d\) by taking \(R=\mathbb {F}_{p_1^{a_1}}\oplus \cdots \oplus \mathbb {F}_{p_s^{a_s}}\), direct sum of finite fields (Theorem 3.3).  相似文献   

6.
Constructions of quantum caps in projective space PG(r, 4) by recursive methods and computer search are discussed. For each even n satisfying \(n\ge 282\) and each odd z satisfying \(z\ge 275\), a quantum n-cap and a quantum z-cap in \(PG(k-1, 4)\) with suitable k are constructed, and \([[n,n-2k,4]]\) and \([[z,z-2k,4]]\) quantum codes are derived from the constructed quantum n-cap and z-cap, respectively. For \(n\ge 282\) and \(n\ne 286\), 756 and 5040, or \(z\ge 275\), the results on the sizes of quantum caps and quantum codes are new, and all the obtained quantum codes are optimal codes according to the quantum Hamming bound. While constructing quantum caps, we also obtain many large caps in PG(r, 4) for \(r\ge 11\). These results concerning large caps provide improved lower bounds on the maximal sizes of caps in PG(r, 4) for \(r\ge 11\).  相似文献   

7.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

8.
In this paper, we construct several new families of quantum codes with good parameters. These new quantum codes are derived from (classical) t-point (\(t\ge 1\)) algebraic geometry (AG) codes by applying the Calderbank–Shor–Steane (CSS) construction. More precisely, we construct two classical AG codes \(C_1\) and \(C_2\) such that \(C_1\subset C_2\), applying after the well-known CSS construction to \(C_1\) and \(C_2\). Many of these new codes have large minimum distances when compared with their code lengths as well as they also have small Singleton defects. As an example, we construct a family \({[[46, 2(t_2 - t_1), d]]}_{25}\) of quantum codes, where \(t_1 , t_2\) are positive integers such that \(1<t_1< t_2 < 23\) and \(d\ge \min \{ 46 - 2t_2 , 2t_1 - 2 \}\), of length \(n=46\), with minimum distance in the range \(2\le d\le 20\), having Singleton defect at most four. Additionally, by applying the CSS construction to sequences of t-point (classical) AG codes constructed in this paper, we generate sequences of asymptotically good quantum codes.  相似文献   

9.
We present some new analytical polygamy inequalities satisfied by the x-th power of convex-roof extended negativity of assistance with \(x\ge 2\) and \(x\le 0\) for multi-qubit generalized W-class states. Using Rényi-\(\alpha \) entropy (R\(\alpha \)E) with \(\alpha \in [(\sqrt{7}-1)/2, (\sqrt{13}-1)/2]\), we prove new monogamy and polygamy relations. We further show that the monogamy inequality also holds for the \(\mu \)th power of Rényi-\(\alpha \) entanglement. Moreover, we study two examples in multipartite higher-dimensional system for those new inequalities.  相似文献   

10.
We analyze rigorously error estimates and compare numerically spatial/temporal resolution of various numerical methods for the discretization of the Dirac equation in the nonrelativistic limit regime, involving a small dimensionless parameter \(0<\varepsilon \ll 1\) which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e. there are propagating waves with wavelength \(O(\varepsilon ^2)\) and O(1) in time and space, respectively. We begin with several frequently used finite difference time domain (FDTD) methods and obtain rigorously their error estimates in the nonrelativistic limit regime by paying particular attention to how error bounds depend explicitly on mesh size h and time step \(\tau \) as well as the small parameter \(\varepsilon \). Based on the error bounds, in order to obtain ‘correct’ numerical solutions in the nonrelativistic limit regime, i.e. \(0<\varepsilon \ll 1\), the FDTD methods share the same \(\varepsilon \)-scalability on time step and mesh size as: \(\tau =O(\varepsilon ^3)\) and \(h=O(\sqrt{\varepsilon })\). Then we propose and analyze two numerical methods for the discretization of the Dirac equation by using the Fourier spectral discretization for spatial derivatives combined with the symmetric exponential wave integrator and time-splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their \(\varepsilon \)-scalability is improved to \(\tau =O(\varepsilon ^2)\) and \(h=O(1)\) when \(0<\varepsilon \ll 1\). Extensive numerical results are reported to support our error estimates.  相似文献   

11.
We study the following energy-efficient scheduling problem. We are given a set of n jobs which have to be scheduled by a single processor whose speed can be varied dynamically. Each job \(J_j\) is characterized by a processing requirement (work) \(p_j\), a release date \(r_j\), and a deadline \(d_j\). We are also given a budget of energy E which must not be exceeded and our objective is to maximize the throughput (i.e., the number of jobs which are completed on time). We show that the problem can be solved optimally via dynamic programming in \(O(n^4 \log n \log P)\) time when all jobs have the same release date, where P is the sum of the processing requirements of the jobs. For the more general case with agreeable deadlines where the jobs can be ordered so that, for every \(i < j\), it holds that \(r_i \le r_j\) and \(d_i \le d_j\), we propose an optimal dynamic programming algorithm which runs in \(O(n^6 \log n \log P)\) time. In addition, we consider the weighted case where every job \(J_j\) is also associated with a weight \(w_j\) and we are interested in maximizing the weighted throughput (i.e., the total weight of the jobs which are completed on time). For this case, we show that the problem becomes \(\mathcal{NP}\)-hard in the ordinary sense even when all jobs have the same release date and we propose a pseudo-polynomial time algorithm for agreeable instances.  相似文献   

12.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

13.
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).  相似文献   

14.
In this work, we further improve the distance of the quantum maximum distance separable (MDS) codes of length \(n=\frac{q^2+1}{10}\). This yields new families of quantum MDS codes. We also construct a family of new quantum MDS codes with parameters \([[\frac{q^2-1}{3}, \frac{q^2-1}{3}-2d+2, d]]_{q}\), where \(q=2^m\), \(2\le d\le \frac{q-1}{3}\) if \(3\mid (q+2)\), and \(2\le d\le \frac{2q-1}{3}\) if \(3\mid (q+1)\). Compared with the known quantum MDS codes, these quantum MDS codes have much larger minimum distance.  相似文献   

15.
In many parallel and distributed multiprocessor systems, the processors are connected based on different types of interconnection networks. The topological structure of an interconnection network is typically modeled as a graph. Among the many kinds of network topologies, the crossed cube is one of the most popular. In this paper, we investigate the panpositionable panconnectedness problem with respect to the crossed cube. A graph G is r-panpositionably panconnected if for any three distinct vertices x, y, z of G and for any integer \(l_1\) satisfying \(r \le l_1 \le |V(G)| - r - 1\), there exists a path \(P = [x, P_1, y, P_2, z]\) in G such that (i) \(P_1\) joins x and y with \(l(P_1) = l_1\) and (ii) \(P_2\) joins y and z with \(l(P_2) = l_2\) for any integer \(l_2\) satisfying \(r \le l_2 \le |V(G)| - l_1 - 1\), where |V(G)| is the total number of vertices in G and \(l(P_1)\) (respectively, \(l(P_2)\)) is the length of path \(P_1\) (respectively, \(P_2\)). By mathematical induction, we demonstrate that the n-dimensional crossed cube \(CQ_n\) is n-panpositionably panconnected. This result indicates that the path embedding of joining x and z with a mediate vertex y in \(CQ_n\) is extremely flexible. Moreover, applying our result, crossed cube problems such as panpositionable pancyclicity, panpositionably Hamiltonian connectedness, and panpositionable Hamiltonicity can be solved.  相似文献   

16.
A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \(\tilde{S}\) as a function of measurement angle \(\theta \in [0,\pi /2]\) exhibits a bimodal behavior inside the open interval \((0,\pi /2)\), i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function \(\tilde{S}(\theta )\) is less than that one at the endpoint \(\theta =0\) or \(\pi /2\). This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1\(\%\) of the total region, with their relative linear sizes achieving \(17.5\%\), and the fidelity between the states of those subregions can be reduced to \(F=0.968\). In addition, a correction to the one-way deficit due to the interior minimum can achieve \(2.3\%\). Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.  相似文献   

17.
It is known that the n-qubit system has no unextendible product bases (UPBs) of cardinality \(2^n-1\), \(2^n-2\) and \(2^n-3\). On the other hand, the n-qubit UPBs of cardinality \(2^n-4\) exist for all \(n\ge 3\). We prove that they do not exist for cardinality \(2^n-5\).  相似文献   

18.
In this paper, we present unconditionally optimal error estimates of linearized Crank–Nicolson Galerkin finite element methods for a strongly nonlinear parabolic system in \(\mathbb {R}^d\ (d=2,3)\). However, all previous works required certain time-step conditions that were dependent on the spatial mesh size. In order to overcome several entitative difficulties caused by the strong nonlinearity of the system, the proof takes two steps. First, by using a temporal-spatial error splitting argument and a new technique, optimal \(L^2\) error estimates of the numerical schemes can be obtained under the condition \(\tau \ge h\), where \(\tau \) denotes the time-step size and h is the spatial mesh size. Second, we obtain the boundedness of numerical solutions by mathematical induction and inverse inequality when \(\tau \le h\). Then, optimal \(L^2\) and \(H^1\) error estimates are proved in a different way for such case. Numerical results are given to illustrate our theoretical analyses.  相似文献   

19.
In the present paper, we propose a new method to inexpensively determine a suitable value of the regularization parameter and an associated approximate solution, when solving ill-conditioned linear system of equations with multiple right-hand sides contaminated by errors. The proposed method is based on the symmetric block Lanczos algorithm, in connection with block Gauss quadrature rules to inexpensively approximate matrix-valued function of the form \(W^Tf(A)W\), where \(W\in {\mathbb {R}}^{n\times k}\), \(k\ll n\), and \(A\in {\mathbb {R}}^{n\times n}\) is a symmetric matrix.  相似文献   

20.
This paper proposes a cost-efficient quantum multiplier–accumulator unit. The paper also presents a fast multiplication algorithm and designs a novel quantum multiplier device based on the proposed algorithm with the optimum time complexity as multiplier is the major device of a multiplier–accumulator unit. We show that the proposed multiplication technique has time complexity \(O((3 {\hbox {log}}_{2}n)+1)\), whereas the best known existing technique has \(O(n{\hbox {log}}_{2} n)\), where n is the number of qubits. In addition, our design proposes three new quantum circuits: a circuit representing a quantum full-adder, a circuit known as quantum ANDing circuit, which performs the ANDing operation and a circuit presenting quantum accumulator. Moreover, the proposed quantum multiplier–accumulator unit is the first ever quantum multiplier–accumulator circuit in the literature till now, which has reduced garbage outputs and ancillary inputs to a great extent. The comparative study shows that the proposed quantum multiplier performs better than the existing multipliers in terms of depth, quantum gates, delays, area and power with the increasing number of qubits. Moreover, we design the proposed quantum multiplier–accumulator unit, which performs better than the existing ones in terms of hardware and delay complexities, e.g., the proposed (\(n\times n\))—qubit quantum multiplier–accumulator unit requires \(O(n^{2})\) hardware and \(O({\hbox {log}}_{2}n)\) delay complexities, whereas the best known existing quantum multiplier–accumulator unit requires \(O(n^{3})\) hardware and \(O((n-1)^{2} +1+n)\) delay complexities. In addition, the proposed design achieves an improvement of 13.04, 60.08 and 27.2% for \(4\times 4\), 7.87, 51.8 and 27.1% for \(8\times 8\), 4.24, 52.14 and 27% for \(16\times 16\), 2.19, 52.15 and 27.26% for \(32 \times 32\) and 0.78, 52.18 and 27.28% for \(128 \times 128\)-qubit multiplications over the best known existing approach in terms of number of quantum gates, ancillary inputs and garbage outputs, respectively. Moreover, on average, the proposed design gains an improvement of 5.62% in terms of area and power consumptions over the best known existing approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号