首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two phytotoxic compounds [2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) and 2(3H)-benzoxazolinone (BOA)] were previously isolated and identified in 35-day-old greenhouse-grown rye shoot tissue. Both compounds were also detected by TLC in greenhouse-grown root and fieldgrown shoot tissue. The concentration of DIBOA varied in the tissues, with the greatest quantity detected in greenhouse-grown shoots. DIBOA and BOA were compared with -phenyllactic acid (PLA) and -hydroxybutyric acid (HBA) for activity on seed germination and seedling growth and were consistently more toxic than either compound. Dicot species tested, including lettuce (Lactuca sativa L.), tomato (Lycopersicon esculentum Mill.), and redroot pigweed (Amaranthus retroflexus L.), were 30% more sensitive than the monocots tested. Of the two benzoxazinone compounds, DIBOA was most toxic to seedling growth. DIBOA and BOA reduced chlorophyll production inChlamydomonas rheinhardtii Dangeard, by 50% at 7.5 × 10–5 M and 1.0 × 10–3 M, respectively. Both DIBOA and BOA inhibited emergence of barnyardgrass (Echinochloa crusgalli L. Beauv.), cress (Lepidium sativum L.), and lettuce when applied to soil, indicating their potential for allelopathic activity.Journal Article No. 11945 of the Michigan Agricultural Experiment Station.  相似文献   

2.
Three allelochemicals from rye or its breakdown products were evaluated for activity on garden cress (Lepidum sativum L.), barnyardgrass [Echinochloa crus-galli (L.) Beauv.], cucumber (Cucumis sativus L.), and snap bean (Phaseolus vulgaris L.). 2,4-Dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA), 2(3H)-benzoxazolinone (BOA), and 2,2-oxo-1,1-azobenzene (AZOB) were all applied singly at 50, 100, and 200 ppm and in two- and three-way combinations each at 50 and 100 ppm. AZOB at 100 and 200 ppm produced 38–49% more inhibition than DIBOA, while combinations of BOA/ DIBOA, which contained AZOB at 100 ppm had 54–90% more inhibition when compared to DIBOA/BOA combinations. All combinations were slightly antagonistic to barnyardgrass, while several combinations caused a synergistic response to garden cress germination and growth. Cucumbers and snap beans exhibited both types of responses, depending on the allelochemical combination and application rate. The plant-produced benzoxazinones were more inhibitory to crops than weeds. Therefore, improved herbicidal selectivity would be expected if there were rapid transformation of the benzoxazinones to the microbially produced AZOB.  相似文献   

3.
2,2-Oxo-1,1 -azobenzene (AZOB), a compound with strong herbicidal activity, was isolated and characterized from a soil supplemented with 2,3-benzoxazolinone (BOA). A parallel experiment with 6-methoxy-2,3-benzoxazolinone (MBOA) yielded AZOB as well as its mono-(MAZOB) and dimethoxy-(DIMAZOB) derivatives. These compounds were produced only in the presence of soil microorganisms, via possible intermediates, I and II, which may dimerize or react with the parent molecule to form the final products. In the case of MBOA, it was shown that demethoxylation precedes the oxidation step. Although BOA and 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) were leached out of rye residues, there were no detectable amounts of the biotransformation products in the soil. When BOA was mixed with soil and rye residue, either under field conditions or in vitro, AZOB was detected. Levels of free BOA in the soil were greatly reduced by incubation with rye residue. AZOB was more toxic to curly cress (Lepidium sativum L.) and barnyardgrass (Echinochloa crusgatti L.) than either DIBOA or BOA.Journal Article No. 12943 of the Michigan Agricultural Experiment Station.  相似文献   

4.
Studies were conducted to evaluate biomass production, tissue phytotoxicity, and allelochemical content of rye (Secale cereale L.) shoots grown in three fertility regimes (low, medium or high) in the greenhouse. Wheeler rye or a polyculture of rye and hairy vetch (Vicia villosa Roth) grown with high fertility produced the greatest biomass (78.7 and 82.7 g), with the lowest root-to-shoot ratio (0.22 and 0.43) produced in the high-fertility treatments. The polyculture treatment grown with low fertility had a greater proportion of hairy vetch (18%) than when grown with high fertility (6%). Rye shoot residue phototoxicity was affected by fertility regime. Radicle elongation of cress (Lepidium sativum L.) and barnyardgrass [Enchinochloa crus-galli (L.) Beauv. I was inhibited by rye shoot residues in a modified Parker bioassay. Rye shoot residue grown with low fertility was less inhibitory to cress radicle elongation than rye residue from the medium- or high-fertility regimes. Extracts of dried rye shoots grown with high fertility were less inhibitory than extracts from other fertility regimes. The concentrations of ether extracts of rye causing 50% inhibition (I50) of cress radicle elongation were between 125 and 276 µg/ml for greenhouse-grown and 60 and 138 µg/ml for the field-grown rye shoots. The major phytotoxic compounds in the rye shoot extracts were identified as DIBOA and BOA. The concentration of DIBOA in the greenhouse-grown rye shoots ranged between 128 and 423 µg/g while BOA concentration ranged between 2.5 and 31 µg/g. DIBOA and BOA levels were lowest in rye shoots grown with high fertility. Correlations between rye shoot biomass, DIBOA and BOA concentration, and cress barnyardgrass radicle length were significant.  相似文献   

5.
In order to elucidate the effects of temperature and photoperiod on the quality and quantity of plant root exudates, a Japanese cucumber (Cucumis sativus, cv. Shougoin-Aonaga-Fushinari) was grown hydroponically in growth chambers under controlled temperature and photoperiod conditions with or without the addition of activated charcoal (AC) to the nutrient solutions. Fresh AC was used to trap the organic compounds exuded from cucumber roots every two weeks. Cucumber plants without AC were severely retarded in root growth and in the accumulation of dry matter, especially at high temperature and long photoperiod, compared to those with AC. The growth inhibitors, adsorbed on the AC or accumulated in the nutrient solution without AC, were extracted by organic solvents and analyzed by GC-MS. Benzoic acid and its derivatives, cinnamic acid derivatives, and fatty acids were identified. The rate of root exudation in vegetative and reproductive stages for some of these organic acids increased with the elevation of temperature and the elongation of photoperiod, and the mean rate was two or more times higher than the minimum exudation at low temperature with short photoperiod. Some of the identified compounds significantly inhibited the germination and/or root growth of lettuce and cucumber.  相似文献   

6.
We examined the allelochemical effects of control soil, native soil (treated soil), and leaf extracts of Phytolacca americana (pokeweed) on the germination rate and seedling growth of Cassia mimosoides var. nomame. We also studied the resulting changes in root-tip ultrastructure and peroxidase isozyme biochemistry. P. americana leaf extract inhibited seed germination, seedling growth, and biomass when compared to control and treated soil. Root and shoot growth in treated soil was stimulated relative to control soil, but root growth was inhibited by 50% in the leaf extract treatment. Biomass of C. mimosoides seedlings grown on leaf extract was reduced sevenfold when compared to the control seedlings. The amounts of total phenolic compounds in the leaf extract, treated soil, and control soil were 0.77, 0.14, and 0.03 mg l−1, respectively. The root tips of C. mimsoides treated with leaf extracts of P. americana showed amyloplasts and large central vacuoles with electron-dense deposits inside them when compared to control root tips. The activity of guaiacol peroxidase (GuPOX) in whole plant, roots, and shoots of C. mimosoides increased as leaf extract increased; maximum activity was observed in extract concentrations of 75% and higher. Root GuPOX activity was three times higher than in shoots. Therefore, we conclude that inhibition of C. mimosoides growth is related to the phenolic compounds in the P. americana leaf extract and the ultrastructure changes in root-tip cells and increased GuPOX activity is a response to these allelochemicals.  相似文献   

7.
The root system is central for plant adaptation to soil heterogeneity and is organized primarily by root branching. To search for compounds that regulate root branching, a forward chemical genetics screen was employed, and 4-methylumbelliferone (4-MU), a coumarin derivative, was found to be a potent regulator of lateral root formation. Exogenous application of 4-MU to Arabidopsis thaliana seeds affected germination and led to reduced primary root growth, the formation of bulbous root hairs, and irregular detached root caps accompanied by reorganization of the actin cytoskeleton in root tips before seedling establishment. Abundant lateral roots formed after exposure to 125 μM 4-MU for 22 days. Molecular, biochemical, and phytochemical approaches were used to determine the effect of 4-MU on root growth and root branching. Arabidopsis seedlings grown in the presence of 4-MU accumulated this compound only in roots, where it was partially transformed by UDP-glycosyltransferases (UGTs) into 4-methylumbelliferyl-β-D-glucoside (4-MU-Glc). The presence of 4-MU-Glc in seedling roots was consistent with the upregulation of several genes that encode UGTs in the roots. This shows that UGTs play an integral role in the detoxification of 4-MU in plants. The increased expression of two auxin efflux facilitator genes (PIN2 and PIN3) in response to 4-MU and the lack of response of the auxin receptor TIR1 and the key auxin biosynthetic gene YUCCA1 suggest that auxin redistribution, rather than auxin biosynthesis, may directly or indirectly mediate 4-MU-induced root branching.  相似文献   

8.
Since distribution of allelopathic compounds in soils is highly variable, injurious effects by such compounds should be related to the frequency of contact with roots. Experiments were conducted to determine how P, K, and water uptake of cucumber seedlings were affected as the fraction of roots in contact with ferulic acid (FA) was increased. Seedlings were grown in Hoagland's nutrient solution for 14 days and then transferred to 0.5 mM CaSO4 solution for 24 hr before being placed into a split-root culture system. The containers in the system were filled with 0.5 mM concentrations of KH2PO4 and CaSO4 or 0.5 mM concentrations of KH2PO4, CaSO4, and ferulic acid (FA). Net uptake of P by seedlings (milligrams per seedling) decreased in a curvilinear (concave) manner as the fraction of the roots in contact with FA increased. Net uptake of K (milligrams per seedling) and water (milliliters per seedling) by seedlings decreased linearly as the fraction of the roots in contact with FA increased. Net uptake of P, K, and water by seedlings was reduced 57, 75, and 29%, respectively, when the whole root system was exposed to FA. Net P and K uptake of roots (milligrams per gram root fresh weight) not in contact with FA decreased in a linear and curvilinear (convex) manner, respectively, as the fraction of roots in contact with FA increased. Net P and K uptake of roots in contact with ferulic acid increased in a linear and curvilinear (convex) manner, respectively. Net water uptake of roots (milliliters per gram root fresh weight) not in contact with FA increased in a curvilinear (concave) manner as the frequency of the roots in contact with FA increased. Net water uptake of roots in contact with FA did not show a trend. Transpiration (milliliters per square centimeter) was reduced in a linear manner as the fraction of roots in contact with FA increased. A very slight compensation by roots not in contact with FA for roots in contact with FA was observed for net water uptake rates. No compensation for P and K uptake rates was observed.Paper Mo. 12421 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7643. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned.  相似文献   

9.
利用泥炭营养基和普通土进行黄瓜育苗比较试验。结果表明:泥炭营养基黄瓜育苗的出苗率、株高、叶面积、根长、苗重等都远高于普通土。出苗后约60d,泥炭营养基育的黄瓜幼苗比普通土的株高高44%,叶面积大97%,根长长61%,苗重重86%。因此,利用泥炭营养基培育黄瓜幼苗,利于幼苗健壮成长,育苗效果显著,值得推广。  相似文献   

10.
Hydroxamic Acid Content and Toxicity of Rye at Selected Growth Stages   总被引:1,自引:0,他引:1  
Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-β-d-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-β-d-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose–response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at different stages. Hydroxamic acids may account for the phytoxicity of extracts derived from rye at early growth stages, but other compounds are probably responsible in later growth stages.  相似文献   

11.
Cyclic hydroxamic acids are innate compounds associated with pest resistance in several grass species. The major cyclic hydroxamic acids of com, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-3H-1,4-benzoxazin-3-one (DIBOA), were measured in seedlings after exposure to various water stress treatments. Both DIMBOA and DIBOA were found in greater quantities in plants experiencing a water deficit stress than in nonstressed plants. The increased cyclic hydroxamic acid coincided with a reduction in seedling growth, suggesting that cyclic hydroxamic acids are stress metabolites. Plants grown under conditions that restrict growth, such as water deficit stress, contain higher cyclic hydroxamic acids, which should make them more resistant to herbivorous pests and pathogenic microorganisms.  相似文献   

12.
To obtain insight into interspecies interactions mediated by allelochemicals, the response of cucumber (Cucumis sativus L. cv Jinyan No.4) and figleaf gourd (Cucurbita ficifolia Bouché) seedlings to trans-cinnamic acid (CA) (1) was investigated. While trans-CA is an autotoxin in cucumber root exudates, figleaf gourd is resistant to it. Cucumber, however, had a high rate of trans-CA uptake by the roots, leading to reduced root growth. The trans-CA treatment also resulted in an intracellular release of Ca2+ from the vacuole to the cytoplasm, and, thus, an increased [Ca2+]cyt level accompanied by gradual loss of cell viability in cucumber roots. Taken together, these results suggest that [Ca2+]cyt homeostatic disturbance is one of the primary triggers for trans-CA phytotoxicity in cucumber.  相似文献   

13.
To reveal the mechanisms underlying root adaptation to drought stress, we isolated and characterized an Arabidopsis mutant, dig5 (drought inhibition of lateral root growth 5), which exhibited increased sensitivity to the phytohormone abscisic acid (ABA) for the inhibition of lateral root growth. The dig5 mutant also had fewer lateral roots under normal conditions and the aerial parts were yellowish with a lower level of chlorophylls. The mutant seedlings also displayed phenotypes indicative of impaired auxin transport, such as abnormal root curling, leaf venation defects, absence of apical hook formation, and reduced hypocotyl elongation in darkness. Auxin transport assays with [3H]-labeled indole acetic acid (IAA) confirmed that dig5 roots were impaired in polar auxin transport. Map-based cloning and complementation assays indicated that the DIG5 locus encodes a chloroplast-localized tRNA adenosine deaminase arginine (TADA) that is involved in chloroplast protein translation. The levels of flavonoids, which are naturally occurring auxin transport inhibitors in plants, were significantly higher in dig5 roots than in the wild type roots. Further investigation showed that flavonoid biosynthetic genes were upregulated in dig5. Introduction of the flavonoid biosynthetic mutation transparent testa 4 (tt4) into dig5 restored the lateral root growth of dig5. Our study uncovers an important role of DIG5/TADA in retrogradely controlling flavonoid biosynthesis and lateral root development. We suggest that the DIG5-related signaling pathways, triggered likely by drought-induced chlorophyll breakdown and leaf senescence, may potentially help the plants to adapt to drought stress through optimizing the root system architecture.  相似文献   

14.
The allelopathic effects of wormwood plants (Artemisia princeps var.orientalis) and their possible phytotoxicity on receptor species were investigated. The aqueous extracts of mature leaf, stem, and root of wormwood plants caused significant inhibition in germination and decreased seedling elongation of receptor plants, whereas germination of some species was not inhibited by extracts of stems and roots. Dry weight growth was slightly increased at lower concentrations of the extract, whereas it was proportionally inhibited at higher concentrations. The calorie value of the organic matter in receptor plants measured by bomb calorimeter was reduced proportionally to the extract concentration. However, results with extracts of juvenile leaf did not correlate with inhibition or promotion of elongation and dry weight.  相似文献   

15.
The root exudates fromPolygonum sachalinense in a recirculating system significantly inhibited lettuce seedling growth. The rhizomes and roots ofP. sachalinense were extracted with 80% acetone. Bioassay of the neutral-acidic fraction on the TLC agar plate showed the inhibitory activity corresponded to the two yellow pigment bands. Two orange needles were isolated and identified as anthraquinone compounds: emodin and physcion. Both compounds exhibited inhibitory activities against the seedling growth of several testing plant species. Glucosides were isolated fromP. sachalinense and were identified as emodin-1-O-β-D-glucoside and physcion-1-O-β-D-glucoside, respectively. On plant growth bioassay, these glucosides showed no phytotoxic activity against lettuce seedlings. The concentrations of emodin, physcion, and their glucosides from rhizome with roots, aerial parts, fallen leaves, and soil were determined. The rhizome with roots and fallen leaves contained emodin and physcion at relatively high concentrations. Emodin also occurs in the soil of this plant community with effective concentrations in the fall. The results indicate that these anthraquinones are responsible for the observed interference and are potent allelopathic substances.  相似文献   

16.
A Novel Laboratory Screening Bioassay for Crop Seedling Allelopathy   总被引:6,自引:0,他引:6  
Crops that control weeds by root exudation of allelochemicals are receiving increased attention, and there are efforts to breed allelopathic cultivars in several crops. The genetic improvement of allelopathic traits is based upon parental germ plasm with high allelopathic activity. Identification of allelopathic germplasm is done in laboratory screening bioassays, but experimental protocols are limited. We developed a fast and reliable laboratory screening bioassay for grain crops that includes dose-response considerations as an integral part of the experimental design. The bioassay was conducted in hydroponic culture, and a range of experiments with 2-(3H)-benzoxazolinone (BOA), an allelochemical of several grain crops, was carried out to define the basic protocol. Because of its sensitivity to BOA, Sinapis alba L. was selected as the receiver species. BOA affected growth (fresh weight and length of shoot and root), enzyme activities (ascorbate peroxidase, catalase, glutathione S-transferase, peroxidase, phenylalanine ammonia-lyase), and chlorophyll fluorescence, whereby root length was the most reliable response parameter. BOA sensitivity was dependent on nutrients for all parameters measured, and, thus, no nutrients were added. A set of experiments with Secale cereale L. and Triticum aestivum L. as donor species was carried out to optimize the protocol. Light and pH were eliminated as primary causes for the observed inhibition. The proposed bioassay has several methodological advantages over current bioassays.  相似文献   

17.
Ailanthus altissima (Mill.) Swingle contains one or more phytotoxic compounds in roots and leaves. Activity is higher in roots, where it occurs primarily in the bark. Powdered root bark and leaflets strongly inhibited growth of garden cress (Lepidium sativum L.) when mixed with soil in Petri dishes (ID50 values=0.03 g root bark, 0.6 g leaflet/dish). The toxic material was readily extracted by methanol but not dichloromethane. Pieces of root bark mixed with soil at 2, 1, and 0.5 g/pot reduced cress biomass in the greenhouse, whereas methanol-extracted root bark did not. The inhibitory effect ofAilanthus tissues in soil was short-lived (4 weeks in pots in greenhouse, 3 days in Petri dishes in laboratory). Inhibition by root bark was sometimes superseded by stimulation. FreshAilanthus root segments placed in or on soil reduced growth of nearby cress seedlings. Fine roots were more inhibitory than coarse, and inhibition became more pronounced with increased time of soil exposure to roots. Soil collected nearAilanthus roots in the field supported reduced radicle growth of cress compared to control soil. In contrast, stemflow fromAilanthus trees stimulated cress growth. The results suggest allelopathy caused by toxin exudation from roots may contribute to the aggressiveness and persistence ofAilanthus in certain habitats.  相似文献   

18.
19.
Distribution and Exudation of Allelochemicals in Wheat Triticum aestivum   总被引:8,自引:0,他引:8  
Wheat allelopathy has potential for weed suppression. Allelochemicals were identified in wheat seedlings, and they were exuded from seedlings into agar growth medium. p-Hydroxybenzoic, trans-p-coumaric, cis-p-coumaric, syringic, vanillic, trans-ferulic, and cis-ferulic acids and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) were identified in both the shoots and roots of 17-day-old wheat seedlings and their associated agar growth medium. Wheat accessions with previously identified allelopathic activity tended to contain higher levels of allelochemicals than poorly allelopathic ones. The allelopathic compounds present in the shoots generally also were identified in the roots and in the agar medium. Allelochemicals were distributed differentially in wheat, with roots normally containing higher levels of allelochemicals than the shoots. When the eight allelochemicals were grouped into benzoic acid and cinnamic acid derivatives, DIMBOA, total coumaric, and total ferulic acids, the amount of each group of allelochemicals was correlated between the roots and the shoots. Most of the allelochemicals identified in the shoots and roots could be exuded by the living roots of wheat seedling into the agar growth medium. However, the amounts of allelochemicals in the agar growth medium were not proportional to those in the roots. Results suggest that wheat plants may retain allelochemicals once synthesized. The presence of allelochemicals in the agar growth medium demonstrated that wheat seedlings were able to synthesize and to exude phytotoxic compounds through their root system that could inhibit the root growth of annual ryegrass.  相似文献   

20.
Tropane Alkaloid Distribution in Atropa baetica Plants   总被引:2,自引:0,他引:2  
Fifteen different tropane alkaloids and derivatives were identified by GC-MS in various plant organs of Atropa baetica. The main root and leaves displayed the largest number of tropane alkaloids, most of which were also present in lateral roots. In contrast, only five of these alkaloids appeared in stem tissue. Quantitative analysis by HPLC showed the presence of the two major tropane alkaloids, atropine and scopolamine, in all the samples studied. Atropine was more abundant, with the highest concentration in the main root (ca. 10.0 mg/g dry wt) followed by leaves (ca. 3.0 mg/g dry wt); scopolamine was present in highest concentration in the main root (0.6 mg/g dry wt) followed by leaves (0.4 mg/g dry wt). The lowest concentrations of these compounds were detected in stem tissue, followed by the lateral roots. The main root constitutes the major tropane alkaloid storage site; moreover, the distribution of these compounds does not appear to be organ dependent. These latter two characteristics are in contrast to closely related Atropa genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号