首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
尖晶石相Li1+xMn2O4及LiAl0.1Mn1.9O4-yFy的循环性能   总被引:1,自引:0,他引:1  
用高温固相法制备了尖晶石相Li1+xMn2O4及LiAl0.1Mn1.9O4-yFy锂离子电池正极材料.电性能测试表明,Al、F共掺杂能提高LiMn2O4的容量.LiAl0.1 Mn1.9O4-yFy(y=0.05、0.10)常温下的初始容量分别为104.4 mAh/g和105.3mAh/g,高于Li1+xMn2O4;100次循环后,容量仍高于Li1+xMn2O4.Li1+xMn2O4(x=0.05、0.06和0.07)的高温(55℃)循环性能较好,100次循环后,容量衰减率分别为24.02%、21.78%和22.23%,除Li1.04Mn2O4(x=0.04)外,均低于LiAl0.1Mn1.9O4-yFy.阴离子的掺杂提高了材料的容量,阳离子掺杂抑制了Jahn-Teller效应,增强了尖晶石结构的稳定性,提高了材料的循环性能.  相似文献   

2.
用高温固相法制备了尖晶石相Li1 xMn2O4及LiAl0.1Mn1.9O4-yFy锂离子电池正极材料.电性能测试表明,Al、F共掺杂能提高LiMn2O4的容量.LiAl0.1 Mn1.9O4-yFy(y=0.05、0.10)常温下的初始容量分别为104.4 mAh/g和105.3mAh/g,高于Li1 xMn2O4;100次循环后,容量仍高于Li1 xMn2O4.Li1 xMn2O4(x=0.05、0.06和0.07)的高温(55℃)循环性能较好,100次循环后,容量衰减率分别为24.02%、21.78%和22.23%,除Li1.04Mn2O4(x=0.04)外,均低于LiAl0.1Mn1.9O4-yFy.阴离子的掺杂提高了材料的容量,阳离子掺杂抑制了Jahn-Teller效应,增强了尖晶石结构的稳定性,提高了材料的循环性能.  相似文献   

3.
万传云 《电池》2007,37(6):463-465
分析了尖晶石LiMn2O4容量衰减的原因:Jahn-Teller效应、Mn的溶解、有机电解液的分解、Li和Mn的错位、自放电及不稳定的两相结构等.从合成方法、掺杂及表面修饰等角度,介绍了抑制尖晶石LiMn2O4容量衰减和提高循环性能的方法.  相似文献   

4.
锂离子电池材料LiMn2O4的制备与改性研究   总被引:2,自引:1,他引:1  
尖晶石LiMn2O4被认为是最有发展前景的锂离子电池正极材料,但其高温容量衰减和循环性能差却是制约其商品化的主要原因。介绍了LiMn2O4的结构和电化学性能,综述了锂离子电池正极材料LiMn2O4的制备方法与改性研究。许多研究表明,在优化合成条件的基础上,通过掺杂和表面修饰可以改善其高温性能。  相似文献   

5.
尖晶石LiMn2O4高温电化学性能研究   总被引:1,自引:0,他引:1  
利用高温固相反应合成了锂离子蓄电池正极材料尖晶石LiMn2 O4 ,研究了在高温 5 5℃下LiMn2 O4 循环容量的衰减和贮存后电化学性能的变化。与常温下相比较 ,5 5℃下尖晶石的容量衰减显著加快 ,贮存后的LiMn2 O4 循环性能变差。改变合成工艺条件如合成温度、n(Li)∶n(Mn)比 ,LiMn2 O4 的高温电化学性能有所改善 ,掺杂金属Co元素合成尖晶石掺Co化合物也能够提高LiMn2 O4 在高温下的循环性能 ,通过测量LiMn2 O4 在高温下电解液中的溶解 ,分析了容量衰减的机理。  相似文献   

6.
锂离子电池正极材料LiMn2O4改性研究进展   总被引:3,自引:0,他引:3  
尖晶石型LiMn2O4以其高能量密度、价格低廉、无环境污染等特点而被视为最具发展潜力的锂离子电池的正极材料之一,但循环过程容量的衰减制约了它商品化。体相掺杂和表面修饰是抑制尖晶石型LiMn2O4容量衰减的有效方法。详细阐述了近年来关于LiMn2O4在掺杂和表面修饰方面的最新研究进展。  相似文献   

7.
尖晶石LiMn2O4表面改性研究进展   总被引:5,自引:0,他引:5  
价格适中、贮量丰富且对环境污染少的LiMn2O4作为未来锂离子电池正极材料的基材,一直是人们研究的热点。但高温下与循环中容量衰减的问题,是制约它商品化的最重要因素。详细阐述了近年来有关尖晶石LiMn2O4容量衰减的机理;介绍了国内外在LiMn2O4正极材料表面修饰改性方面采用的各种方法以及取得的成果。  相似文献   

8.
陈猛  史鹏飞  李胜军 《电源技术》2004,28(10):618-620
为了提高尖晶石型LiMn2O4材料的循环性能,采用掺杂金属的高温固相合成法合成了尖晶石型Li0.9Mg0.05Mn1.95O4材料,并以该材料作正极材料,中间相炭微球(MCMB)为负极材料,组装成562247型方型锂离子蓄电池。测试结果表明,750 ℃下烧结的尖晶石型Li0.9Mg0.05Mn1.95O4循环性能最好。在室温下,1 C充放电时电池比能量为83 Wh/kg和195 Wh/L,实际电池中所制材料比容量可达85 mAh/g,循环300次后电池的可逆容量变化很小。另外,还对电池的储存性能、倍率充放电性能及高低温性能进行了研究。  相似文献   

9.
化学镀镍包覆提高尖晶石LiMn2O4的高温性能   总被引:11,自引:0,他引:11  
尖晶石LiMn2O4是最有希望代替钴酸锂的锂离子蓄电池正极材料,高温下容量衰减严重是其得以广泛应用的瓶颈。采用化学镀镍包覆方法对尖晶石LiMn2O4进行了表面改性。通过X射线衍射(XRD)和扫描电子显微镜(SEM)等方法对改性后的尖晶石表面进行了研究。电化学测试结果表明化学镀镍包覆方法能大幅度提高Li-LiMn2O4电池的高温性能。  相似文献   

10.
研究了石墨/[Li(Ni0.4Co0.2Mn0.4) O2+LiMn2O4]锂离子电池在循环过程中容量的衰减和正负极活性材料精细结构的变化.Li(Ni0.4Co02Mn0.4)O2在循环过程中晶体结构的保持能力要优于LiMn2O4.循环过程中正负极活性材料点阵参数、微晶尺寸、堆垛无序和微应变等精细结构的演变与电池的循环性能具有关联性.  相似文献   

11.
采用柠檬酸络合法合成了尖晶石型锂锰氧化物(Li1.01Mn2O4)和钴、铬、氟复合掺杂锂锰氧化物(Li1.01CoxCr0.2-xMn1.8-O3.95F0.05)。XRD分析表明所合成的样品仍为尖晶石结构。研究发现:在循环使用过程中,尖晶石锂锰氧化物容量的损失在反应第一步主要是由于Jahn-Teller效应,而在反应第二步则主要是由于锂和锰晶格位置的错动;钴、铬、氟复合掺杂可有效改善锂锰氧化物的循环性能,对其高温性能也有一定的改善。  相似文献   

12.
锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。  相似文献   

13.
作为一种新型材料,锂离子蓄电池尖晶石LiMn2O4正极材料已经得到了广泛的应用,但容量衰减成为LiMn2O4商品化的主要障碍。从正极材料的溶解及相变化、电解液的分解、钝化膜的形成、过充电、集流体的腐蚀等方面介绍了影响LiMn2O4正极材料容量衰减的机理。提出了减少LiMn2O4正极材料容量衰减的几种方法,并对LiMn2O4正极材料的发展前景做出了展望。  相似文献   

14.
尖晶石型LiMn2O4高温失效机制及解决方法   总被引:4,自引:0,他引:4  
赵家昌  黄可龙  张玲 《电源技术》2002,26(5):388-392
尖晶石型LiMn2O4在高温下的容量衰减是阻止其商品化的重要原因.国内外研究结果表明,导致高温下电化学性能失效的原因是多方面的.电解液中微量水的存在会导致LiPF6的分解而产生HF,由此造成Mn溶解.碳阳极表面形成的SEI钝化层会导致锂离子蓄电池体系中锂的损失.此外Jahn-Teller效应和高温下LiMn2O4结构的变化也会导致LiMn2O4高温容量损失.通过对高温失效机制的分析,提出了通过减小尖晶石比表面积、表面修饰改性来减小电解液的分解、在电解液中添加合适添加剂来中和HF、通过阴阳离子掺杂来稳定尖晶石的结构和阻止Jahn-Teller效应的方法来改善尖晶石高温性能的方法.  相似文献   

15.
锂离子蓄电池正极材料LiMn2O4掺钒的研究   总被引:4,自引:0,他引:4  
陈昌国  余丹梅  张苏红  朱伟  黄宗卿 《电源技术》2001,25(4):262-263,274
采用低温液相碳酸盐法合成了掺杂钒的Li-Mn-O正极材料.X射线衍射分析表明当掺钒量小于20%,合成的电极材料Li-V-Mn-O仍能保持LiMn2O4的尖晶石结构,当掺钒量超过20%则合成产物中不含尖晶石结构的LiMn2O4.循环伏安和恒电流充放电实验证实掺杂钒可改善Li-Mn-O正极材料电化学反应的可逆性,并提高其比容量;掺钒量大于10%时,合成产物中出现杂质相导致电极材料电化学性能下降.  相似文献   

16.
吕东生  陶英  李伟善 《电源技术》2005,29(6):357-360
元素Mn在电解液中的溶出造成的容量损失是尖晶石锂锰氧化物系列材料容量衰减的主要原因之一。在电解液中的化学稳定性是评价尖晶石锂锰氧化物系列材料或锂离子蓄电池电解质性能的重要指标之一。通过测量尖晶石锂锰氧化物系列材料粉末微电极在电解液中的开路电位随贮存时间的变化,估算出其在电解液中的相对平均溶解速率来评价LiMn2O4系列材料在电解液中的化学稳定性。该方法具有测试设备简单、测试过程简便快捷、结果可靠的特点。  相似文献   

17.
高温下LiMn2O4的容量衰减及对策   总被引:20,自引:4,他引:16  
陈彦彬  刘庆国 《电池》2001,31(4):198-201
LiMn2O4尖晶石材料在高温贮存和循环过程中的容量衰减问题是其大规模工业化应用的主要障碍.容量衰减的主要原因是锰的溶解及其伴随的材料结构的变化、钝化膜的形成,Jahn-Teller效应、及电解液的分解.高温性能的改进涉及电极/溶液界面的各个环节:体相掺杂、表面相掺杂、减小比表面、电解液组成优化、采用能够捕获质子作用的电解液添加剂、以及能够吸收氧气的电极材料添加剂等.  相似文献   

18.
锂离子蓄电池正极材料LiMn2O4高温容量衰减解析   总被引:9,自引:0,他引:9  
有关锂离子蓄电池正极材料LiMn2 O4的衰减机理的认识目前尚存在争议。通过对LiMn2 O4高温循环数据的解析 ,比较了两个电位平台容量衰减的相对速度。结果表明 ,放电过程中高电位平台容量的衰减速度快于低电位平台 ,而充电过程中低电位平台的衰减速度更快。循环过程中极化增大所导致的电位平台间的容量转移决定了两平台容量的相对衰减速度 ,极化增大与钝化膜的增厚、电解质的积累性氧化所引起的电导率下降有关。另外电解质的氧化也呈加速趋势 ,加快了高电位平台放电容量的衰减速度。几种掺杂材料在循环过程中容量衰减的相对速度与极化增加的相对快慢完全吻合 ,进一步印证了容量衰减与材料溶解、结构变化、钝化膜增厚之间的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号