共查询到19条相似文献,搜索用时 69 毫秒
1.
2.
3.
为了进一步提高种群多样性在粒子群优化执行中的效率,提出一种基于多样性反馈的自适应粒子群优化算法(APSO)。APSO采用一种新的种群多样性评价策略,使惯性权值在搜索过程中随多样性自适应性地调整,从而均衡算法的勘探和开发过程。此外,最优粒子采用精英学习策略跳出局部最优区域,从而在保证算法收敛速度的同时能够自适应地调整搜索方向,提高解的精确度。通过一组典型测试函数的仿真结果,验证了APSO的有效性。 相似文献
4.
针对标准粒子群算法易出现早熟的问题,提出了一种带邻近粒子信息的粒子群算法。该算法中粒子位置的更新不仅包括自身最优和种群最优,还包括粒子目前位置最近粒子最优的信息。为了有效地平衡算法的全局探索和局部开发,并使其收敛于全局最优值,采用了时变加速因子策略,两个加速因子随进化代数线性变化。通过对5个经典测试函数优化的数值仿真实验并与其他粒子群算法的比较,结果表明了在平均最优值和成功率上都有所提高,特别是对多峰函数效果更加明显。 相似文献
5.
针对粒子群算法有陷入局部最优的缺点,提出一种基于灰狼算法的粒子群优化算法.首先,根据自然界中优胜劣汰的生存法则,对每次迭代种群中的最差粒子进行进化,其次,由于粒子群算法中整个种群中的最优粒子有很强的引导能力,对最优粒子进行扰动,增大寻找全局最优的可能性;最后,结合灰狼优化算法,引导粒子群包围式进行搜索,增强全局搜索能力;将改进的粒子群算法与标准粒子群算法在9个测试函数上进行了寻优精度和收敛速度的对比,结果证明改进粒子群算法(PSO_GWO)在收敛速度和寻优精度上均优于粒子群算法(PSO). 相似文献
6.
分合粒子群优化算法* 总被引:1,自引:0,他引:1
基于社会系统中普遍存在“分久必合,合久必分”的现象,提出了基于分合思想的粒子群优化算法。分策略提高了演化群体的多样性,克服了粒子群优化算法局部收敛的缺陷。合策略吸取了不同群体的优良特性,提高了算法的全局搜索能力。函数优化的仿真结果证明了算法的有效性。 相似文献
7.
基于自主学习和精英群的多子群粒子群算法 总被引:1,自引:0,他引:1
为了提高动态多子群粒子群算法中粒子学习的自主性,提出一种基于自主学习和精英群的粒子群算法.该算法借鉴教育心理学自主学习的理念,用基础群中粒子自主选择学习对象的操作代替子群的重组操作,并通过精英群局部搜索的配合来达到寻优的目的.将所提出的算法应用于6个测试函数,并与动态多子群PSO等算法进行了比较,比较结果表明,新算法在提高收敛速度、精度和寻优时间等方面具有良好的性能。 相似文献
8.
提出了一种基于密度熵的多目标粒子群算法(EMOPSO)。采用一个外部集保存所发现的Pareto最优解(精英),并将外部集作为粒子的全局极值。为保证种群的多样性,当精英大于外部集的大小时采用一种基于密度熵的策略进行分布度保持,从而使所得到的解集保持良好的分布性。最后与经典的多目标进化算法(MOEAs)进行了对比实验,实验结果表明了该算法的有效性。 相似文献
9.
10.
综合改进的粒子群神经网络算法 总被引:5,自引:0,他引:5
粒子群优化算法是一种解决非线性、不可微和多峰值复杂优化问题的优秀算法,但该算法在进化后期容易出现速度变慢以及早熟的现象;BP神经网络的学习算法是基于梯度下降这一本质的,因此存在着容易陷于局部极小值,收敛速度慢,训练时间长等问题.针对上述现象,对粒子群优化算法进行了增强粒子多样性和避免种群陷入早熟两个方面的改进,并提出了一种基于改进算法的粒子群神经网络算法,最后通过在IRIS数据集上进行的仿真实验验证了改进的有效性. 相似文献
11.
12.
带扩展记忆的粒子群优化算法仿真分析 总被引:1,自引:0,他引:1
从心理学的角度提出带扩展记忆的粒子群优化算法(PSOEM),以克服标准粒子群优化算法(PSO)在优化多维函数过程中粒子搜索方向性差、目的性弱的缺陷.采用扩展记忆存储粒子的历史信息,并引入参数表征扩展记忆的重要性.利用经典离散控制理论分析其定值算法的稳定范围.此算法与标准算法是同源异构的,可以与已改进的PSO算法结合使用.基准测试函数的仿真结果验证了所提出算法的有效性. 相似文献
13.
14.
对二进制布尔型粒子群优化算法提出改进,通过在其速度更新公式中引入扰动因子避免粒子过早的陷入局部极值,提出两种调整惯性权重和学习因子取1的概率的策略以平衡算法的收敛和发散,分别是按照粒子相似性自适应调整和线性调整,由此得到两种带扰动因子的布尔型粒子群优化算法。4个基准测试函数的对比,实验结果表明了两种改进算法的有效性和优良性能。 相似文献
15.
为解决多目标粒子群优化算法存在解的多样性差、分布不均等问题,提出一种混合择优机制:在迭代过程中每个粒子依概率,根据解集信息熵或Sigma值确定其全局极值;并直接对解集进行基于信息熵的克隆选择,根据支配关系更新解集,充分发掘分布性更好的解。测试函数的仿真实验结果表明,该算法在保持较好的收敛性能的同时,其求解的分布性指标要明显优于其他算法,这说明混合择优机制能够有效地提升多目标粒子群优化算法求解的多样性和分布性。 相似文献
16.
17.
为了提高相似目标的分类识别率,实现降维,提出了一种基于改进的粒子群优化(IPSO)的特征选择与目标识别方法。IPSO利用二进制位串来计算位置和速度,并在速度更新公式中增加约束项,权衡识别率与特征维数的比重选择适应度函数。结合距离分类器,用IPSO在自建的相似目标特征库上进行最优特征子集选择及分类实验。实验结果表明了该算法的有效性,在UCI数据集上的对比实验结果表明了IPSO的改进效果。 相似文献
18.
Monitoring of particle swarm optimization 总被引:4,自引:1,他引:3
In this paper, several diversity measurements will be discussed and defined. As in other evolutionary algorithms, first the
population position diversity will be discussed followed by the discussion and definition of population velocity diversity
which is different from that in other evolutionary algorithms since only PSO has the velocity parameter. Furthermore, a diversity
measurement called cognitive diversity is discussed and defined, which can reveal clustering information about where the current
population of particles intends to move towards. The diversity of the current population of particles and the cognitive diversity
together tell what the convergence/divergence stage the current population of particles is at and which stage it moves towards. 相似文献
19.
针对基本粒子群优化算法(PSO)易陷入局部极值点,进化后期收敛慢,精度较差等缺点,提出了一种改进的粒子群优化算法.该算法用一种无约束条件的随机变异操作代替速度公式中的惯性部分,并且使邻居最优粒子有条件地对粒子行为产生影响,提高了粒子间的多样性差异,从而改善了算法能力.通过与其它算法的对比实验表明,该算法能够有效地进行全局和局部搜索,在收敛速度和收敛精度上都有显著提高. 相似文献