首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Gommed  G. Grossman   《Solar Energy》2007,81(1):131-138
Growing demand for air conditioning in recent years has caused a significant increase in demand for primary energy resources. Solar-powered cooling is one of the environmentally-friendly techniques which may help alleviate the problem. A promising solar cooling method is through the use of a liquid desiccant system, where humidity is absorbed directly from the process air by direct contact with the desiccant. The desiccant is then regenerated, again in direct contact with an external air stream, by solar heat at relatively low temperatures. The liquid desiccant system has many potential advantages over other solar air conditioning systems and can provide a promising alternative to absorption or to solid desiccant systems.Earlier work by the authors included theoretical simulations and preliminary experiments on the key components of the liquid desiccant system. The objective of the present study has been to construct a prototype system based on the knowledge gained, to monitor its performance, identify problems and carry out preliminary design optimization. A 16 kWt system was installed at the Energy Engineering Center at the Technion, in the Mediterranean city of Haifa. The system comprises a dehumidifier and a regenerator with their associated components operating together to dehumidify the fresh (ambient) air supply to a group of offices on the top floor of the building. LiCl-water is employed as the working fluid. The system is coupled to a solar collector field and employs two methods of storage – hot water and desiccant solution in the regenerated state. The performance of the system was monitored for five summer months under varying operating conditions. The paper describes the operation of the experimental system and presents the measured data and the calculated performance parameters.  相似文献   

2.
Component performance and seasonal operational experiences have been analysed for desiccant cooling systems powered by solar air collectors. Measurements during the commissioning phase in Spain (public library) and in Germany (production hall) showed that the dehumidification efficiency of the sorption rotors was 80% and the humidification efficiency of the contact evaporators was 85–86%. Only in a two-stage desiccant system monitored in China (laboratory building), a dehumidification efficiency of 88% was reached. The rotary heat exchangers only had 62–68% measured heat recovery efficiency, which is lower than specified.  相似文献   

3.
In this paper, a solar hybrid desiccant air conditioning system, which combines the technologies of two-stage desiccant cooling (TSDC) and air-source vapor compression air-conditioning (VAC) together, has been configured, experimentally investigated and theoretically analyzed. The system mainly includes a TSDC unit with design cooling capacity for 10 kW, an air-source VAC unit with 20 kW in nominal cooling capacity, a flat plate solar collector array for 90 m2, a hot water storage tank and a cooling tower. Performance model of the system has been created in TRNSYS simulation studio. The objective of this paper is to report the test result of the solar hybrid air conditioning system and evaluate the energy saving potential, thereby providing useful data for practical application. Experimental results show that, under typical weather condition, the solar driven desiccant cooling unit can achieve an average cooling capacity of 10.9 kW, which contributes 35.7% of the cooling capacity provided by the hybrid system. Corresponding average thermal COP is over 1.0, electric COP is up to 11.48. Under Beijing (temperate), Shanghai (humid) and Hong Kong (extreme humid) weather conditions, the solar TSDC unit can remove about 57%, 69% and 55% of the seasonal moisture load, thereby reducing electric power consumption by about 31%, 34% and 22%, respectively. These suggest that the solar hybrid system is feasible for a wide range of operating conditions.  相似文献   

4.
An indirect forced convection and desiccant integrated solar dryer is designed and fabricated to investigate its performance under the hot and humid climatic conditions of Chennai, India. The system consists of a flat plate solar air collector, drying chamber and a desiccant unit. The desiccant unit is designed to hold 75 kg of CaCl2-based solid desiccant consisting of 60% bentonite, 10% calcium chloride, 20% vermiculite and 10% cement. Drying experiments have been performed for green peas at different air flow rate. The equilibrium moisture content Me is reached in 14 h at an air flow rate of 0.03 kg/m2 s. The system pickup efficiency, specific moisture extraction rate, dimensionless mass loss, mass shrinkage ratio and drying rate are discussed in this paper.  相似文献   

5.
This paper reports the constructed combined solar thermal and electric desiccant cooling system - its initial operation and operational procedures. The system, as designed, can be operated during nighttime and daytime. The nighttime operation is for thermal energy storage using the auxiliary electric heater, while the daytime operation is for solar energy collection and desiccant cooling. Ongoing experimental evaluation is being undertaken to observe and determine the long-term performance of the system.  相似文献   

6.
This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions.  相似文献   

7.
Esam Elsarrag   《Solar Energy》2008,82(7):663-668
The regeneration system represents a vital part of any desiccant air conditioning system. The need of a solar assisted desiccant regeneration system is more important today. In this paper, an experimental study of a novel regeneration system modified from solar tilted still is carried out. A corrugated blackened surface is used to heat the desiccant and an air flow is used to regenerate calcium chloride solution. The effect of the liquid to air flow rate ratio; the desiccant temperature; the desiccant concentration and the inlet air humidity ratio on the evaporation rate has been studied experimentally. A wide range of liquid to air flow rate ratios are employed. The optimum value of the liquid to air flow rate ratio for higher evaporation rate is reported.  相似文献   

8.
C.E.L. Nóbrega  N.C.L. Brum 《Energy》2011,36(3):1564-1570
The interest in solid desiccant cooling cycles has been continuously increasing, supported by both the ecological soundness and the cost reduction associated with the low grade thermal energy it requires. As a result, many feasibility studies are conducted considering solar energy or waste heat as thermal sources for the desiccant cooling cycles. Such studies often consider pre-set values for the effectiveness of individual components, such as evaporative coolers, heat and desiccant wheels. Although a great number of works have been devoted to desiccant cooling cycle simulation, the diversity of assumptions underlying each mathematical model often makes it difficult to establish an unbiased comparison between independently obtained results. Moreover, many analyses are conducted disregarding important characteristics of the conditioned space, such as the ratio of the sensible and latent loads, or the minimum ventilation flow rate as required by the given number of occupants per hour. Accordingly, the present work proposes a design methodology for desiccant cooling cycles, which can be easily carried out graphically on a psychrometric chart. The procedure is then exemplified to analyze the influence of design parameters, such as the steepness of the condition line, over the applicability of desiccant systems.  相似文献   

9.
Thermal energy collected from a PV-solar air heating system is being used to provide cooling for the Mataro Library, near Barcelona. The system is designed to utilise surplus heat available from the ventilated PV facade and PV shed elements during the summer season to provide building cooling. A desiccant cooling machine was installed on the library roof with an additional solar air collector and connected to the existing ventilated PV façade and PV sheds. The desiccant cooling cycle is a novel open heat driven system that can be used to condition the air supplied to the building interior. Cooling power is supplied to the room space within the building by evaporative cooling of the fresh air supply, and the solar heat from the PV-solar air heating system provides the necessary regeneration air temperature for the desiccant machine. This paper describes the system and gives the main technical details. The cooling performance of the solar powered desiccant cooling system is evaluated by the detailed modelling of the complete cooling process. It is shown that air temperature level of the PV-solar air heating system of 70 °C or more can be efficiently used to regenerate the sorption wheel in the desiccant cooling machine. A solar fraction of 75% can be achieved by such an innovative system and the average COP of the cooling machine over the summer season is approximate 0.518.  相似文献   

10.
T.S. Ge 《Solar Energy》2010,84(2):157-159
In this study, a two-stage solar driven rotary desiccant cooling (TSRDC) system with novel configuration and newly developed silica gel-haloid composite desiccant is proposed aiming to reduce regeneration temperature and to achieve high energy performance. Simulated results show that there also exists an optimal rotation speed for TSRDC system. Compared with one-stage system, it is found that for the similar supply air state, the required regeneration temperature of TSRDC system is lower and for the same regeneration temperature, the cooling capacity of TSRDC is bigger.  相似文献   

11.
A.S. Alosaimy  Ahmed M. Hamed 《Energy》2011,36(7):3992-4001
Theoretical and experimental investigation on the application of flat plate solar water heater coupled with air humidifier for regeneration of liquid desiccant has been presented in this work. The heated water from the storage tank of the solar heating system is circulated in a finned tube air heater. Hot air from the air heater is blown through a packing of a honeycomb type for the purpose of regeneration of calcium chloride (CaCl2) solution. An experimental system has been designed and installed for this purpose. The system comprises a solar water heater with a storage tank connected to an air/water heat exchanger. Hot air from the heat exchanger is blown to the air humidifier, which functions in this study as a regenerator. Calcium chloride solution is applied as the working desiccant in this study. Solution concentration is determined at the end of regeneration process and the mass of evaporated water is evaluated. It is observed that the heating temperature varies, at day time, in a range of about 5 °C. This limited variation in hot water temperature demonstrates the importance of the storage tank to attain a nearly steady state operation of the system. Experimental results show that solution with 30% concentration can be regenerated up to 50% using solar energy. In the theoretical part of this study, a multiple-layer artificial neural network (ANN) model has been applied to study the performance of a solar liquid-desiccant dehumidification/regeneration system when calcium chloride solution is applied as the working desiccant. The experimental results of the present study are used to construct and test the ANN model. Then the model has been utilized to describe and analyze the effect of the inlet conditions of air on the regeneration process. Good agreement between the outputs from the ANN model and the corresponding results from the experimental data has been found. The proposed model can work well as a predictive tool to complement the experiments.  相似文献   

12.
Solid desiccant air-conditioning systems can take care of both the sensible and latent load of a conditioned space, as well as of the fresh air requirements, through the use of thermal energy. The development of desiccant systems, competitive to conventional cooling ones, would require the optimization of the parameters which are involved in the design of the systems for a range of ambient conditions the systems will face throughout their lifetime. The present work aims at identifying the main design parameters, and investigates their effect on the performance of the systems. Specific guidelines for the dimensioning of the systems are proposed, on the basis of an easy to implement steady state model.  相似文献   

13.
The regeneration of silica gel desiccant by a solar air heater for use in an air-conditioning system has been investigated. The hot air is produced by a compound parabolic concentrator collector (CPC), which has aperture and receiver areas 1.44 and 0.48 m2, respectively. The regeneration temperature can be started at 40 oC. The regeneration rate and the regeneration efficiency were greatly affected by the solar radiation, but depended only slightly on the different initial moisture contents of silica gel and the number of silica gel beds. The regeneration of silica gel provided by the CPC collector is suitable for a tropical climate where the diffuse solar radiation is high all the year round.  相似文献   

14.
In this paper, performance details and operational benefits of a large scale solar trigeneration system that provides for solar assisted desiccant cooling, heating and hot water generation installed in a teaching institute building have been reported. A two-rotor desiccant system designed for handling 12 000 m3/hr of air was integrated into existing plant to provide a net reduction in energy consumption over the pre-existing heating ventilation and air-conditioning and domestic hot water systems. The system is controlled and monitored by a building management system which has been used to investigate and analyse the typical system behaviour. Heat from solar energy contributed consistently to reduce gas usage for water heating and on an annual basis showed a reduction of 21% of consumed energy. The solar energy contribution for space heating varied over winter months and during some months it was observed to contribute more than 50% of the total energy requirements for space heating. Under suitable ambient conditions, approximately 35% of total building cooling load was met by the solar driven desiccant cooling system. Continuous monitoring has also helped understand some of the operational issues of the system.  相似文献   

15.
A solar adsorption cooling system which can be switched between a system with heat storage and a system without heat storage was designed. In the system with heat storage, a heat storage water tank was employed as the link between the solar collector circulation and the hot water circulation for the adsorption chillers. However, the heat storage water tank was isolated in the system without heat storage, and the hot water was directly circulated between the solar collector arrays and the adsorption chillers. It was found that the inlet and outlet temperatures for the solar collector arrays and the adsorption chillers in the system without heat storage were more fluctuant than those of the system with heat storage. Also found was that the system with heat storage operated stably because of the regulating effect by the heat storage water tank. However, under otherwise similar conditions, the cooling effect of the system without heat storage was similar to that of the system with heat storage. Compared with the system with heat storage, the system without heat storage has the advantages of higher solar collecting efficiency as well as higher electrical COP.  相似文献   

16.
An air conditioning option, that is, desiccant cooling system (DCS) in which alternative energy source, such as solar energy, nature gas and rejected heat, can play their part for the benefit of environment and saving energy is constructed by regenerative dehumidification component combined with heat exchanger (recuperator) and evaporative cooler.The mathematical model of an rotary desiccant wheel that can be used to calculate the performance of stationary or rotary bed and transient or steady state operation is founded by considering many terms. A computer program for this new model has been compiled and some results of computer simulation compared with experimental value, they are good in agreement.The performance of evaporator is estimated by computer. We developed some kinds of evaporator of which the COP is about 1015 to decrease the room temperature and clean the air in drier climates. Using a new kind of chemical refrigerant invented by Zu-She Liu, the air conditioner will be simple in construction and very efficient (COP > 30).  相似文献   

17.
Ahmed M. Hamed 《Renewable Energy》2003,28(13):2099-2111
Theoretical and experimental investigation on the desorption characteristics of a packed porous bed is presented in this study. The granules of burned clay are applied as a desiccant carrier. Calcium chloride is used as the working desiccant. The theoretical model defines the transient gradient of air stream parameters (humidity and temperature) as well as desiccant concentration in the bed. In the experimental study, transient concentration gradient in the bed is evaluated by weight method. The bed is divided into seven separate layers. Air stream at low temperature and nearly constant inlet parameters are used for desorption purposes. Concentration gradient in the bed is found highly dependent on the mass transfer rate. For the specified operating conditions and stated assumptions, experimental measurements shows acceptable agreement with the analytical solution.  相似文献   

18.
夏季降温的太阳房实验分析   总被引:1,自引:0,他引:1  
对建造在南宁市西郊的一座被动式太阳房在夏季运行时的实验数据进行了分析,其屋顶集热表面在夏季夜间能产生一定的致冷效果。所制取的冷空气不但在夜间可以对该太阳房起到降温的作用,并且可以储藏起来以供白天降温使用。  相似文献   

19.
Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 °C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 °C).  相似文献   

20.
This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号