首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Insight into transport phenomena in complex solidification processes, such as direct chill (DC) casting, that cannot be found from experimental observation can be gained from numerical simulations. These predictions depend on material, process, and numerical parameters which contain inherit uncertainties due to experimental measurements or model assumptions. A fully transient numerical model of the direct chill casting process of Al-4.5 wt pct Cu was used to examine the propagation of input uncertainty to outputs of interest. The effect of microstructural model parameters, thermal boundary conditions, and material property input uncertainties were examined. Probability density functions were calculated based on these input uncertainties for metrics that characterize the ingot macrosegregation and sump depth. The macrosegregation-level predictions depend strongly on parameters that control the formation of the rigid mushy zone and shrinkage-driven flow. The heat release and transfer in the mushy zone are the dominant factors for determining the sump depth.

  相似文献   

5.

The macroscopic multiphase flow and the growth of the solidification microstructures in the mushy zone of a direct chill (DC) casting are closely coupled. These couplings are the key to the understanding of the formation of the macrosegregation and of the non-uniform microstructure of the casting. In the present paper we use a multiphase and multiscale model to provide a fully coupled picture of the links between macrosegregation and microstructure in a DC cast billet. The model describes nucleation from inoculant particles and growth of dendritic and globular equiaxed crystal grains, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass, and solute mass transport, motion of free-floating equiaxed grains, and of grain refiner particles. We compare our simulations to experiments on grain-refined and non-grain-refined industrial size billets from literature. We show that a transition between dendritic and globular grain morphology triggered by the grain refinement is the key to the explanation of the differences between the macrosegregation patterns in the two billets. We further show that the grain size and morphology are strongly affected by the macroscopic transport of free-floating equiaxed grains and of grain refiner particles.

  相似文献   

6.
The aim of this study is to determine a value for the critical resolved stress for the growth of deformation twins. Loading–unloading tests are performed on extruded magnesium alloy Mg-3Al-1Zn to determine the loads under which twins begin to shrink during unloading. After conversion of the applied stress to mean resolved values, the critical stresses are seen to increase from 6 to 14 MPa as the plastic applied strain is raised from 1 to 6 pct. It is suggested that the “relaxation” dislocations generated to accommodate the twinning strain contribute to building a hard dislocation forest. The effect is analyzed by analogy with accommodation dislocations formed at non-deforming particles.  相似文献   

7.
8.
Mg-Zn系耐热铸造镁合金的最新研究进展   总被引:3,自引:0,他引:3  
刘洋  谢骏  郭雪锋 《铝加工》2010,(3):20-26
综述了Mg-Zn系耐热铸造镁合金的最新研究进展,并分析了高温蠕变机理及其设计思路,重点介绍了Cu、Zr、Al及稀土元素RE和碱土元素(Ca、Sr)在Mg-Zn系耐热镁合金中的作用,讨论了合金元素使用中存在的问题和今后的发展方向。  相似文献   

9.
Friction stir processing (FSP) is emerging as an effective tool for microstructural modification and property enhancement. As-cast AZ91 magnesium alloy was friction stir processed with one-pass and two-pass to examine the influence of processing conditions on microstructural evolution and corresponding mechanical properties. Grain refinement accompanied with development of strong basal texture was observed for both processing conditions. Ultrafine-grained (UFG) AZ91 was achieved under two-pass FSP with fine precipitates distributed on the grain boundary. The processed UFG AZ91 exhibited a high tensile strength of ~435 MPa (117 pct improvement) and tensile fracture elongation of ~23 pct. The promising combination of strength and ductility is attributed to the elimination of casting porosity, and high density of fine precipitates in an UFG structure with quite low dislocation density. The effects of grain size, precipitate, and texture on deformation behavior have been discussed.  相似文献   

10.
采用等离子喷涂在镁合金表面制备Al2O3基防腐陶瓷涂层,并对涂层激光重熔和热处理,研究涂层的形貌和表面残余应力。研究表明:激光重熔涂层粗糙度降低、表面致密度大大提高。激光重熔降低Al2O3涂层残余应力幅度44.76%,热处理降低11.12%,激光重熔效果较热处理更为良好。Al2O3、Al2O3-13%Ti O2和Al2O3-40%Ti O2三种等离子喷涂制备态涂层残余应力分别为363.57MPa、304MPa、-202.38MPa,Al2O3-40%Ti O2具有最好的残余应力属性,有利于涂层服役寿命的提高。  相似文献   

11.
Quantitative knowledge of the thermal mechanical history experienced during direct chill (DC) casting aids the scientific understanding of the process especially in terms of defect formation such as hot tearing. In this work, a thermomechanical finite element (FE) model has been developed to simulate the DC casting of magnesium alloy AZ31 billets. The mathematical model simulates the evolution of temperature, stress, and strain within the billet during an industrial DC casting process. These quantities were then used to calculate the evolution in pressure, and hence hot tearing tendency, within the semisolid regime via the Rappaz–Drezet–Gremaud (RDG) criterion. The temperature predictions were validated against experimental thermocouple data measured during a plant trial at an industrial magnesium DC casting facility. In addition, the residual elastic strains predicted by the model were compared to residual strain measurements made at the Canadian Neutron Beam Centre (CNBC) using a magnesium billet produced during the industrial casting trial. The validated model was then used to quantitatively assess the impact of casting speed on the hot tearing tendency in AZ31 billets.  相似文献   

12.
The objective of this investigation was to study the mechanical properties of a magnesium alloy welded by a CO2 laser. Residual stresses were measured by X-ray diffraction. They were calculated by the classic sin2 ψ method in the isotropic zones by using the orientation distribution function (ODF) in the textured zones. The results demonstrated that laser welding results in the formation of several different zones with different microstructural and mechanical properties. Welding principally leads to a reduction in grain size and a new distribution of phases. The most remarkable observation was that of a superficial layer on the surface of the welded zone. This layer has a marked crystallographic texture, a reduction in the level of aluminum, and an elevated microhardness. These characteristics disappear at a depth of 200 μm under the welded zone. These modifications can be explained by the nature of the solidification, which occurs under nonequilibrium conditions resulting in an equiaxial columnar transition. This transition is evident also within the profile of residual tensile stresses, which are at their maximum at the interface between the superficial layer and the rest of the welded zone. These results are explained by the anisotropic properties of the textured layer in relation to the plasticity.  相似文献   

13.
稀土元素Nd对铸造镁合金组织和性能的影响   总被引:1,自引:0,他引:1  
综述了稀土元素Nd对不同铸造镁合金组织以及力学性能影响的研究概况;分析了Nd在多种铸造镁合金中的作用,稀土对镁合金具有净化、细化、合金化等作用,可产生细晶、固溶、时效沉淀和弥散等强化;展望了稀土元素在铸造镁合金中的研究与应用前景。  相似文献   

14.
15.
16.
镁及镁合金型材的挤压   总被引:5,自引:0,他引:5  
在镁及镁合金加工材中,挤压材占着重要的地位,从普通的管材到核工业的燃料盒,品种与规格不下五千种。虽然全球2002年挤压材的产量还不到3000t,但用途却很重要。本文对挤压用镁合金及其挤压材的性能及生产工艺作了扼要的介绍。  相似文献   

17.
利用自行开发研制的高温滑动磨损与热接触疲劳材料试验机,并运用表面覆膜技术、金相分析和扫描电镜,研究了用于精轧机的高铬镍无限冷硬铸铁轧辊材料在热轧状态下的耐磨特性,分析了这种轧辊材料的表面形貌、表层组织的变化情况.结果表明,当轧制公里数达到88 km时,高铬镍无限冷硬铸铁轧辊表面产生了碳化物的浮凸和剥落.  相似文献   

18.
19.
Metallurgical and Materials Transactions A - In this work, tensile tests were conducted on two powder metallurgy materials based on the AZ31 magnesium alloy. The first material, named AZ31-PM, was...  相似文献   

20.
在工程金属中,镁合金密度最小,并具有强度适中、切削加工性能好、吸震性强等优点,因此镁合金锻件在交通运输工具中获得了较为广泛的应用。但镁合金为密集六方晶格,其锻造性能比铝合金及铜合金低,易产生各向异性。本文对锻造镁合金的化学成分、锻件的力学性能、锻造工艺、锻压机及辅助设备等作了全面的扼要叙述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号