首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The residual stress fields associated with variable-polarity plasma-arc (VPPA) welds in 2024-T351 aluminum alloy plates have been measured nondestructively using neutron and synchrotron X-ray diffraction. Neutron diffraction allows in-depth measurements of the full strain tensor to be made in thick components; synchrotron X-rays allow for rapid measurements of strains inside components, although their penetration is less than that of the neutrons and constraints arising from the diffraction geometry generally lead to only two strain components being easily measurable. Hence, a combination of the two techniques, applied as described herein, is ideal for a detailed nondestructive evaluation of residual stresses in plates. The residual stresses in a 12-mm-thick VPPA-welded aluminum 2024-T351 alloy plate have been measured using neutron diffraction. The stresses were then remeasured by a combination of neutron and synchrotron X-ray diffraction after the plate had been reduced in thickness (or, skimmed) to 7 mm by machining both sides of the weld, mimicking the likely manufacturing operation, should such welds be used in aerospace structures. A strong tensile residual stress field was measured in the longitudinal direction, parallel to the weld, in both the as-welded and skimmed specimens. There was only a slight modification of the residual stress state on skimming.  相似文献   

3.
The longitudinal, transverse, and through-thickness (short-transverse) residual stresses in an electron beam-welded plate of WASPALOY, a high-strength nickel-based superalloy, have been characterized using neutron diffraction, X-ray diffraction, and a hole-drilling method. Where possible, the results from the different techniques, and the associated uncertainties, have been compared. For the neutron measurements, the γ/γ′ {111} peak was used for the determination of lattice strains. The X-ray measurements were carried out using Fe K α radiation, the sin2 ψ technique, and the {311} γ/γ′ composite peak. The Matthar-Soete method was used for the incremental hole-drilling measurements. Unfortunately, due to texture effects, it was not possible to detect the residual stresses within the weld metal by the diffraction-based methods. For the estimation of residual stresses, plane-specific values of the Young’s modulus and Poisson’s ratio were determined from tensile testpieces using in situ neutron diffractometry. When these data are used, it is found that the neutron, X-ray, and hole-drilling residual stress data are mutually consistent, although the absolute certainties vary with the method employed. The results indicate that, next to the weld, the longitudinal residual stresses approach 1000 MPa and are typically far greater (up to 5 times) than those in the transverse and through-thickness directions. Measurements of the longitudinal strain with distance along the welding direction indicate that the stress state reaches a steady state over the central portion of the plate; for this reason, the majority of the diffraction measurements have been made in the plane perpendicular to the weld at the center of the plate. A simple analysis of the thermal cycles and the extent of plastic deformation induced in the specimen is presented. The plastic “upset zone” has a size which is at least 3 times greater than the cross-sectional area of the weld metal; this suggests that, for accurate analysis of weld-induced distortion, attention should be paid to the evolution of residual stresses in the heat-affected zone as well as the fusion zone.  相似文献   

4.
A benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The “stress lattice” specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling of ductile cast iron, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as a benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast components. This enables incorporation of the residual stresses at the design phase along with external loads for accurate predictions of fatigue and fracture performance of the cast components.  相似文献   

5.
A coupled thermal and mechanical finite-element (FE) model has been developed to describe the inertia welding of RR1000 nickel-base superalloy tubes using the DEFORM 7.2 FE package. The energy input rate is derived from measurements of torque, angular rotation speed, and upset taken from actual inertia welding trials. The model predicts the thermal history of the joint as well as the deformation pattern and final residual stresses. The thermal variation has been validated by a microstructural study of the weld region of the trial joints. Thermal profile predictions have been made for three welds having the same initial kinetic rotational energy but different levels of flywheel inertia and rotational velocity. The concomitant residual stress predictions have been compared with nondestructive neutron diffraction residual stress measurements. The implications of the results for inertia welding are discussed.  相似文献   

6.
7.
8.
A series of neutron diffraction measurements have been carried out to determine the elastic residual strains deep within a large, 40-cm-diameter, forged and water-quenched IN718 aeroengine compressor disc. Neutron path lengths of up to 6 cm were necessary to probe the thickest parts of the forging, and three-dimensional strain and stress components have been derived for the first time in such a large superalloy specimen. Measurements have been compared with the results from a coupled thermal-mechanical finite-element model of the quenching process, based upon appropriate temperature-dependent material properties, with some success. The general residual stress state in the disc is one of near-surface compression, balanced by tension within the disc interior. The steepest stress and strain gradients occur in the transition region from compression to tension, about 1 cm below the surface all around the disc. The largest stress component is in the disc tangential direction and reaches a magnitude of 400 to 500 MPa near the disc surface and at its core. This exceeds the effective yield stress because of the presence of significant hydrostatic stress.  相似文献   

9.
The effect of the base material microstructure on the development of residual stresses across the weld line in inertia friction welds (IFWs) of high-strength nickel-base superalloy RR1000 was studied using neutron diffraction. A comparison was carried out between tubular IFW specimens generated from RR1000 heat treated below (fine grain (FG) structure) and above (coarse grain (CG) structure) the γ′-solvus. Residual stresses were mapped in the as-welded (AW) condition and, after a postweld heat treatment (PWHT), optimized for maximum alloy strength. The highest tensile stresses were generally found in the hoop direction at the weld line near the inner diameter of the tubular-shaped specimens. A comparison between the residual stresses generated in FG and CG RR1000 suggests that the starting microstructure has little influence on the maximum residual stresses generated in the weld even though different levels of energy must be input to achieve a successful weld in each case. The residual stresses in the postweld heat treated samples were about 35 pct less than for the AW condition. Despite the fact that the high-temperature properties of the two parent microstructures are different, no significant differences in terms of stress relief were found between the FG and CG RR1000 IFWs. Since the actual weld microstructures of FG and CG RR1000 inertia welds are very similar, the results suggest that it is the weld microstructure and its associated high-temperature properties rather than the parent material that affects the overall weld stress distribution and its subsequent stress relief.  相似文献   

10.
Sprengel  M.  Ulbricht  A.  Evans  A.  Kromm  A.  Sommer  K.  Werner  T.  Kelleher  J.  Bruno  G.  Kannengiesser  T. 《Metallurgical and Materials Transactions A》2021,52(12):5342-5356

The use of post-processing heat treatments is often considered a necessary approach to relax high-magnitude residual stresses (RS) formed during the layerwise additive manufacturing laser powder bed fusion (LPBF). In this work, three heat treatment strategies using temperatures of 450 °C, 800 °C, and 900 °C are applied to austenitic stainless steel 316L samples manufactured by LPBF. These temperatures encompass the suggested lower and upper bounds of heat treatment temperatures of conventionally processed 316L. The relaxation of the RS is characterized by neutron diffraction (ND), and the associated changes of the microstructure are analyzed using electron backscattered diffraction (EBSD) and scanning electron microscopy (SEM). The lower bound heat treatment variant of 450 °C for 4 hours exhibited high tensile and compressive RS. When applying subsequent heat treatments, we show that stress gradients are still observed after applying 800 °C for 1 hour but almost completely vanish when applying 900 °C for 1 hour. The observed near complete relaxation of the RS appears to be closely related to the evolution of the characteristic subgrain solidification cellular microstructure.

  相似文献   

11.
Finite element (FE) process modeling of inertia friction welding between dissimilar high-strength steels, AerMet® 100 and SCMV, has been carried out using the DEFORM?-2D (v10.0) software. This model was validated against experimental data collected for a test weld performed between the materials; this included process data such as upset and rotational velocities as well as thermal data collected during the process using embedded thermocouples. The as-welded hoop residual stress from the FE model was also compared with experimental measurements taken on the welded component using synchrotron X-ray and neutron diffraction techniques. The modeling work considered the solid-state phase transformations which occur in the steels, and the trends in the residual stress data were well replicated by the model.  相似文献   

12.
The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 × 1014 m−2 and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson–Hall method shows the dislocation density of about 3.2 × 1015 m−2 and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.  相似文献   

13.
14.
Additive manufacturing (AM) technology provides unique opportunities for producing net-shape geometries at the macroscale through microscale processing. This level of control presents inherent trade-offs necessitating the establishment of quality controls aimed at minimizing undesirable properties, such as porosity and residual stresses. Here, we perform a parametric study into the effects of laser scanning pattern, power, speed, and build direction in powder bed fusion AM on residual stress. In an effort to better understand the factors influencing macroscale residual stresses, a destructive surface residual stress measurement technique (digital image correlation in conjunction with build plate removal and sectioning) has been coupled with a nondestructive volumetric evaluation method (i.e., neutron diffraction). Good agreement between the two measurement techniques is observed. Furthermore, a reduction in residual stress is obtained by decreasing scan island size, increasing island to wall rotation to 45 deg, and increasing applied energy per unit length (laser power/speed). Neutron diffraction measurements reveal that, while in-plane residual stresses are affected by scan island rotation, axial residual stresses are unchanged. We attribute this in-plane behavior to misalignment between the greatest thermal stresses (scan direction) and largest part dimension.  相似文献   

15.
In Twinning Induced Plasticity (TWIP) steels, delayed fracture occurs due to residual stresses induced during deep drawing. In order to investigate the relation between residual stresses and delayed fracture, in the present study, residual stresses of deep drawn TWIP steels (22Mn-0.6C and 18Mn-2Al-0.6C steels) were investigated using the finite element method (FEM) and neutron diffraction measurements. In addition, the delayed fracture properties were examined by dipping tests of cup specimens in the boiled water. In the FEM analysis, the hoop direction residual stress was highly tensile at cup edge, and the delayed fracture was initiated by the separation of hoop direction and propagated in an axial direction. According to the neutron diffraction analysis, residual stresses in 18Mn-2Al-0.6C steel were about half the residual stresses in 22Mn-0.6C steel. From the residual strain measurement using electron back-scatter diffraction, formation of deformation twins caused a lot of grain rotation and local strain at the grain boundaries and twin boundaries. These local residual strains induce residual stress at boundaries. Al addition in TWIP steels restrained the formation of deformation twins and dynamic strain aging, resulting in more homogeneous stress and strain distributions in cup specimens. Thus, in Al-added TWIP steels, residual stress of cup specimen considerably decreased, and delayed fracture resistance was remarkably improved by the addition of Al in TWIP steels.  相似文献   

16.
This article describes an experimental study aimed at characterizing the extent of residual stress relaxation during thermal treatment of inertia friction-welded alloy 720Li nickel-based superalloy welded tubular rings. In the as-welded condition, yield level tensile hoop stresses were found by neutron diffraction in the weld region along with axial bending stresses (tensile toward the inner diameter (ID)/compressive toward the outer). The evolution of these residual stress levels during postweld heat treatment (PWHT) was mapped experimentally over the weld cross section. After 8 hours of PWHT, the axial stresses relaxed by 70 pct, whereas the hoop stresses reduced by only 50 pct. Some scatter of residual stress evolution was found between samples, particularly for the axial stress direction. This was attributed to substandard tooling to grip the rings. The results on subscale samples were transferred to a full-scale aeroengine (650-mm diameter) compressor drum assembly that was postweld heat treated for 8 hours. It was found that the residual stresses, particularly in the axial direction, were noticeably lower in this full-scale weld component compared to the subscale weld heat treated for the same time. The differences seem to be best rationalized by the different standards of jigging used during joining these two types of welds.  相似文献   

17.
X-ray or neutron diffraction can be used to measure residual stresses in crystalline materials. Normally, the d-sin2 Ω-method is used to derive the stress from the diffraction data. However, the method fails if the samples are anisotropic because of a crystallographic texture, The present paper gives an overview of this problem. The theoretical part gives an analysis that sheds some light on the influence of crystallographic texture on diffraction data obtained during stress measurements. It is based on linear elastic models (Reuss and Voigt). The next part reviews the experimental findings of various authors, which shows that linear elastic models are sometimes insufficient to deal with anisotropy, especially in cases when plastic deformation has taken place. Finally, several methods (including some that make use of the ODF) that are used when dealing with textured samples are reviewed.  相似文献   

18.
Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials.  相似文献   

19.
The presence of thermally induced residual stresses, created during the industrial direct chill (DC) casting process of aluminum alloys, can cause both significant safety concerns and the formation of defects during downstream processing. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. Recently, the variation in residual elastic strains in the steady-state regime of casting has been measured as a function of radial position using neutron diffraction (ND) in an AA6063 grain-refined cylindrical billet. In the present study, these measurements are used to show that a well-designed thermomechanical finite element (FE) process model can reproduce relatively well the experimental results. A sensitivity analysis is then carried out to determine the relative effect of the various mechanical parameters when computing the as-cast residual stresses in a cylindrical billet. Two model parameters have been investigated: the temperature when the alloy starts to thermally contract and the plasticity behavior. It is shown that the mechanical properties at low temperatures have a much larger influence on the residual stresses than those at high temperatures.  相似文献   

20.
TWIP (TWinning Induced Plasticity) steel is one of the advanced steels with attractive mechanical properties.The typical composition of TWIP steel includes a large amount of manganese with some aluminum and silicon.Previous study has shown that TWIP steel exhibits high strength with adequate elongation at high strain rates,so that TWIP steel is desired to be applied for automotive use.However,there are few studies concerning the deformation behaviors aimed to make clear the TWIP effect in TWIP steel.In this study,static tensile deformation behaviors of an Fe-30Mn-3Al-3Si TWIP steel and a SUS310S one were studied by in situ neutron diffraction during tensile deformation.In terms of mechanical properties obtained by the static tensile tests,the TWIP steel showed better balance of tensile strength and uniform elongation than the 310S steel.The angular dispersion neutron diffraction with a wavelength of 0.16 nm was performed during stepwise tensile testing by using a neutron diffractometer for residual stress analysis (RESA) at the Japan Atomic Energy Agency.A specimen was extended in a step by step manner and neutron diffraction profiles of (111),(200) and (311) for austenite were obtained at each step.The diffraction peak,lattice plane spacing,lattice plane strain and so on were determined by the profile analysis as a function of applied stress.The changes of lattice plane strain for austenite in the TWIP and 310S steels indicated several deformation stages in the tensile deformation and can be discussed the difference of intergranular stress between the two samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号