共查询到17条相似文献,搜索用时 62 毫秒
1.
软溶胶-凝胶法制备LiCoO2薄膜电极 总被引:5,自引:0,他引:5
采用软溶胶-凝胶技术在金属Ni基体一步合成LiCoO2薄膜电极。其合成条件是:含钴离子和锂离子的溶液、反应温度100℃、反应压力0.1MPa、电流密度0-10mA/cm^2、反应时间20h。XRD、XPS、SEM、循环伏安和恒电流充、放电等测试表明:薄膜电极LiCoO2晶体为R3^-m型结构;薄膜具有(101)方向的择优取向,其大小均匀、直径约为0.3μm的晶粒层状生长,层与层之间结合较紧密且有较多微孔;薄膜电极表现为多孔电极,具有良好的电性能。软溶胶-凝胶制备薄膜电极,工艺流程短、能耗低,具有很大的发展潜力。 相似文献
2.
软溶胶--凝胶法制备LiCoO2薄膜 总被引:1,自引:0,他引:1
层次LiCoO2作为锂离子电池的正极材料,多以固态煅烧和液相合成为主.本文采用软溶胶-凝胶技术在浓LiOH溶液中一步合成LiCoO2薄膜.由XRD、SEM、AAS等测试方法可知LiCoO2晶体结构好,薄膜致密、无明显的孔隙和缺陷,其厚度为30μm.作者还对薄膜形成机理作了一定的探讨.合成薄膜的条件是:4MLiOH液、100℃的饱和蒸气压、电流密度为0~10mA/cm2、20h. 相似文献
3.
近年来有关锂离子电池的研究热点之一是氧化物正极材料,综合评述以锂氧钴为代表的各氧化物性能及其电极的制备,得出一种电极制备新廉洁软溶胶-凝胶法,此法优于其它传统法之处 可一步制成电极,预期其在制备微型锂离子电池领域有很大的应用前景。 相似文献
4.
软溶胶—凝胶法制备LiCoO2薄膜 总被引:6,自引:0,他引:6
层次LiCoO2作为锂离子电池的正极材料,多以固态煅烧和液相合成为主。本文采用软溶胶-凝胶技术在浓LiOH溶液中一步合成LiCoO2薄膜。由XRD、SEM、AAS等测试方法可知LiCoO2晶体结构好,薄膜致密、无明显的孔隙和缺陷,其厚度为30μm。作者还对薄膜形成机理作了一定的探讨。合成薄膜的条件是:4MLiOHi液、100℃的饱和蒸气压、电流密度为0-10mA/cm^2、20h。 相似文献
5.
医用NiTi合金表面溶胶-凝胶法制备TiO2-SiO2薄膜 总被引:4,自引:0,他引:4
采用溶胶-凝胶法在NiTi形状记忆合金表面制备了TiO2-SiO2复合薄膜,在提高医用NiTi合金的抗腐蚀性方面,收到了显著的效果.运用电化学方法对不同组成的TiO2-SiO2薄膜在模拟体液中的腐蚀行为进行了研究,结果表明,随薄膜中 Ti/Si比的增加,TiO2-SiO2薄膜的抗腐蚀性增强.划痕试验表明 TiO2-SiO2(Ti/Si=4:1)膜与NiTi合金基体具有较高的界面结合强度.用原子力显微镜(AFM)对TiO2-SiO2薄膜的表面形貌及表面粗糙度进行观察和分析,解释并讨论了TiO2-SiO2薄膜的配方组成与其抗腐蚀性的关系,SiO2含量较少时,薄膜结构致密,膜层均匀平滑,且膜基结合力好,作为医用NiTi合金的表面保护层,可以使其耐腐蚀性有显著提高. 相似文献
6.
7.
采用溶胶-凝胶法,以LiNO3,Co(NO3)2和PAA为主要原料,研究制备LiCoO2薄膜过程中不同实验条件对晶体形成过程及形貌的影响.经偏光显微镜、扫描电镜、原子力显微镜对所形成的薄膜表面进行分析发现聚丙烯酸的含量、Li+离子和Co2+离子的总浓度和配比、烧焙温度及升温速度等均会对薄膜中的成分、纳米化的晶体的形成及表面形貌有着较大的影响.实验表明,最佳烧结温度在600℃左右时有利于LiCoO2晶体的形成. 相似文献
8.
9.
10.
11.
12.
Jin Xie Jie Zhao Yayuan Liu Haotian Wang Chong Liu Tong Wu Po-Chun Hsu Dingchang Lin Yang Jin Yi Cui 《Nano Research》2017,(11):3754-3764
Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important,owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles.Here,we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique.During prolonged cycling at high-voltage,the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte,as confirmed by electrochemical impedance spectroscopy and Raman characterizations,but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density.As a result,a capacity value close to 200 mA·h·g-1 was achieved for the LiCoO2 electrodes with commercial level loading densities,cycled at the cut-off potential of 4.6 V vs.Li+/Li for 50 stable cycles;this represents a 40% capacity gain,compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs.Li+/Li. 相似文献
13.
采用水热电化学法同时制备出LiCoO2粉末和薄膜.LiCoO2粉末是由菊花状晶粒组成,LiCoO2薄膜由0.2~0.4μm左右的颗粒堆积而成.LiCoO2薄膜电极首次循环伏安过程在3.85V和4.3V左右出现强氧化峰,在3.6V左右出现还原峰;LiCoO2粉末的首次循环伏安过程在4.3V左右出现强氧化峰,在3.5V左右出现还原峰;在随后的循环中,氧化和还原峰对应的电位和强度衰减程度小,表明该方法制备的LiCoO2正极材料具有良好的循环伏安性能. 相似文献
14.
以硝酸锌和HMT为原料、乙二醇为分散剂、三乙醇胺为表面活性剂合成球形氧化锌晶粒,然后将其引入0.02mol·L-1的HMT溶液里,95℃的条件下进行长达3天的表面修饰,成功地制备出具有独特结构的玫瑰花形氧化锌晶粒。XRD、SEM以及荧光分光光度计的分析结果表明:经修饰获得的玫瑰花型氧化锌呈典型的纤锌矿结构,其直径是球形的近三倍(从600nm增长到1700nm),晶粒质量更为完善,且具有优秀的光致发光性能,仅在388nm处显示尖锐的紫外峰。此外,基于两类晶粒的形貌结构特征及反应过程,对其形成机理进行了初步推断。 相似文献
15.
16.
17.
Lithiation Mechanism of Tunnel‐Structured MnO2 Electrode Investigated by In Situ Transmission Electron Microscopy
下载免费PDF全文
![点击此处可从《Advanced materials (Deerfield Beach, Fla.)》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Seung‐Yong Lee Lijun Wu Altug S. Poyraz Jianping Huang Amy C. Marschilok Kenneth J. Takeuchi Esther S. Takeuchi Miyoung Kim Yimei Zhu 《Advanced materials (Deerfield Beach, Fla.)》2017,29(43)
Manganese oxide (α‐MnO2) has been considered a promising energy material, including as a lithium‐based battery electrode candidate, due to its environmental friendliness. Thanks to its unique 1D [2 × 2] tunnel structure, α‐MnO2 can be applied to a cathode by insertion reaction and to an anode by conversion reaction in corresponding voltage ranges, in a lithium‐based battery. Numerous reports have attributed its remarkable performance to its unique tunnel structure; however, the precise electrochemical reaction mechanism remains unknown. In this study, finding of the lithiation mechanism of α‐MnO2 nanowire by in situ transmission electron microscopy (TEM) is reported. By elaborately modifying the existing in situ TEM experimental technique, rapid lithium‐ion diffusion through the tunnels is verified. Furthermore, by tracing the full lithiation procedure, the evolution of the MnO intermediate phase and the development of the MnO and Li2O phases with preferred orientations is demonstrated, which explains how the conversion reaction occurs in α‐MnO2 material. This study provides a comprehensive understanding of the electrochemical lithiation process and mechanism of α‐MnO2 material, in addition to the introduction of an improved in situ TEM biasing technique. 相似文献