首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
以Ti为中间层实现了TiAl与Ni基合金的接触反应钎焊。采用扫描电镜和电子探针等手段对钎焊接头的界面结构及生成相进行分析,并对接头剪切强度进行测试。结果表明:当钎焊温度为960℃时,钎缝主要由Tiss和Ti2Ni组成;当钎焊温度从960℃升高到1000℃时,钎缝中生成Ti-Al及Al-Ni-Ti化合物,典型界面结构为:GH99/(Ni,Cr)ss/Ti2Ni+AlNi2Ti+TiNi/Ti3Al+Al3NiTi2/Ti3Al+Al3NiTi2/TiAl;钎焊温度继续升高,Ti3Al和Al3NiTi2变得粗大,导致接头性能下降。当钎焊温度为1000℃,保温10min时,接头剪切强度达到最大值233MPa。随钎焊温度的升高,钎缝厚度先增加后减小。  相似文献   

2.
采用Ag-Cu钎料与Ti-Zr-Ni-Cu钎料,对TiAl与Ti合金进行了真空钎焊试验,主要研究了采用两种钎料时的界面反应以及钎焊温度对界面组织及性能的影响.研究发现,采用Ag-Cu钎料时界面结构为:Ti/Ti(Cu,Al)2/TiCux Ag(s,s)/Ag(s,s)/Ti(Cu,Al)2/TiAl,当钎焊温度T=1 223 K,保温时间t=10 min时接头的剪切强度达到223.3 MPa;采用Ti-Zr-Ni-Cu钎料时在界面出现了Ti2Ni,Ti(Cu,Al)2等多种金属间化合物,当钎焊温度T=1 123 K,保温时间t=10 min时接头的剪切强度达到139.97 MPa.  相似文献   

3.
TiAl基合金与Ni基合金钎焊连接接头界面组织及性能   总被引:1,自引:0,他引:1  
采用BNi2钎料实现了TiAl基合金与Ni基高温合金的钎焊。采用扫描电镜、能谱分析和X射线衍射等手段对钎焊接头的界面组织结构及生成相进行分析,并对接头的抗剪强度进行测试。结果表明,钎焊接头的典型界面结构为:GH99/(Ni)ss (γ)+Ni3B+CrB+富Ti-硼化物/TiNi2Al/TiNiAl+Ti3Al/TiAl;随着钎焊温度的升高或保温时间的延长,较多的B和Si元素扩散进入两侧母材,导致钎缝中硼化物数量减少,而TiAl/钎缝界面的TiNi2Al和TiNiAl+Ti3Al金属间化合物层厚度增加;当钎焊温度为1050 ℃,保温时间为5 min时,接头的抗剪强度达到最大为205 MPa,接头主要断裂于TiNiAl金属间化合物层。当钎焊温度升高或保温时间继续延长时,TiNiAl厚度显著增加,导致接头强度下降  相似文献   

4.
研究了6082铝合金和TC4钛合金分别添加钎料锌和镍下的搅拌摩擦钎焊(FSB)搭接接头微观组织及焊后热处理后接头界面金属间化合物(IMC)的生成种类和先后顺序以及生长动力学模型。研究表明:添加钎料锌时,界面金属间化合物主要由AlZn、TiAl、TiAl2、TiAl3组成,先后顺序为TiAl2→TiAl3→TiAl→AlZn,并获得了界面IMC层的生长动力学模型为;添加钎料镍时,界面金属间化合物层主要由TiNi、Al3Ni2、Ti3Al和TiAl组成,先后顺序为776 K以下,Ti-Ni-Al焊接界面金属间化合物形成的顺序是Al3Ni2→TiNi→TiAl→Ti3Al,776 K以上时生成顺序为Al3Ni2→TiNi→Ti3Al→TiAl,并获得了界面IMC层的生长动力学模型。界面IMC层的厚度均随着温度的提高或保温时间的延长而增加。添加锌的接头的剪切强度由未热处理时的154 MPa提高到194 MPa,而添加钎料镍的接头由142 MPa提高至166 MPa。  相似文献   

5.
采用Ti-28Ni(wt.%)共晶钎料在1100℃实现了高铌TiAl合金(Ti-45Al-8.5Nb-(W, B, Y) (at.%), 简称TAN)的真空钎焊连接。钎焊接头的典型界面结构为TAN/τ3-Al3Ti2Ni + B2/α2-Ti3Al layer/α2-Ti3Al + δ-Ti2Ni/α2-Ti3Al layer/τ3-Al3Ti2Ni + B2/TAN。深入研究了保温时间对钎焊接头界面组织和连接性能的影响。结果表明:Ni元素从熔融钎料向TAN母材的扩散决定了界面组织的演化,随着保温时间的延长促进了扩散层的增厚,同时导致钎缝宽度逐渐减小。接头剪切强度测试结果显示当保温时间为15分钟时,获得的最大接头室温剪切强度和高温(600℃)剪切强度分别是248.6MPa和166.4MPa。接头断口分析表明在剪切实验中裂纹主要沿着连续的金属间化合物层产生和扩展。  相似文献   

6.
采用Ti-28Ni(质量分数,%)共晶钎料在1100℃实现了高铌Ti Al合金(Ti-45Al-8.5Nb-(W,B,Y)(at%),TAN)的真空钎焊连接。钎焊接头的典型界面结构为TAN/τ_3-Al_3Ti_2Ni+B2/α_2-Ti_3Al layer/α_2-Ti_3Al+δ-Ti_2Ni/α_2-Ti_3Al layer/τ_3-Al_3Ti_2Ni+B2/TAN。深入研究了保温时间对钎焊接头界面组织和连接性能的影响。结果表明:Ni元素从熔融钎料向TAN母材的扩散决定了界面组织的演化,随着保温时间的延长促进了扩散层的增厚,同时导致钎缝宽度逐渐减小。接头剪切强度测试结果显示,当保温时间为15 min时,获得的最大接头室温剪切强度和高温(600℃)剪切强度分别是248.6和166.4 MPa。接头断口分析表明在剪切试验中裂纹主要沿着连续的金属间化合物层产生和扩展。  相似文献   

7.
采用Ni-34Ti共晶钎料实现了TiAl合金的钎焊连接,分析了TiAl合金钎焊接头的界面结构,重点研究了钎焊温度对接头组织及性能的影响规律.结果表明,Ni-34Ti共晶钎料主要由TiNi相和TiNi3相组成,钎料熔点为1 120 ℃.不同钎焊温度下获得的接头界面组织均呈现对称特征,无气孔和裂纹等缺陷,接头中主要形成了TiNiAl2,B2,TiNiAl和TiNi2Al四种物相.Al元素在钎缝中的快速扩散,促进了钎缝中Ti-Ni-Al三元化合物的形成.钎焊温度为1 180 ℃保温10 min条件下,TiAl合金接头获得了最大的室温抗剪强度87 MPa.剪切过程中,裂纹容易在富含TiNi2Al相的区域产生和扩展,大量脆性TiNi2Al相的存在对接头的性能是有害的.  相似文献   

8.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

9.
采用纯钛箔做中间层扩散连接TiAl合金与镍基高温合金(GH99).利用扫描电镜、电子探针和X射线衍射等手段对界面产物及接头的界面结构进行分析.结果表明,GH99/Ti界面主要由四个反应层组成,分别为(Ni,Cr)ss,富Ti-(Ni,Cr)ss,TiNi和Ti2Ni.当保温时间较短时,Ti/TiAl界面反应层主要为Ti(Al)ss.延长保温时间,此界面反应层转化为Ti3Al和Al3NiTi2.随着保温时间的延长,TiNi反应层厚度持续增加,而Ti2Ni反应层厚度先增加后减小.随保温时间的延长接头的抗剪强度先增加后减小,然后又增加.由接头断口形貌可以看出,接头主要断裂于Ti2Ni反应层.  相似文献   

10.
研究了Ti3Al基合金真空钎焊及接头组织性能;分析了不同钎料对接头界面组织和剪切强度的影响,初步优选了钎料,优化了钎焊连接规范参数;利用电子探针、扫描电镜和X射线衍射等方法对接头进行了定性和定量分析.结果表明:采用NiCrSiB钎料连接时,在界面处有金属间化合物TiAl3、AlNi2Ti和Ni基固溶体生成,TiAl3和AlNi2Ti的生成降低了接头的剪切强度;采用TiZrNiCu钎料连接时,在界面处有金属间化合物Ti2Ni、Ti(Cu,Al)2和Ti基固溶体生成,Ti2Ni和Ti(Cu,Al)2的形成降低了接头的剪切强度;采用AgCuZn钎料连接时,在界面处生成TiCu、Ti(Cu,Al)2和Ag基固溶体,TiCu和Ti(Cu,Al)2的生成是降低接头剪切强度的主要原因;采用CuP钎料连接时,在界面处生成了Cu3P、TiCu和Cu基固溶体,CuaP和TiCu使接头的剪切强度降低;对于NiCrSiB钎料,当连接温度为1 373 K,连接时间为5 min时,接头的剪切强度最高为219.6 MPa对于TiZr-NiCu钎料,当连接温度为1 323 K,连接时间为5 min时,接头的最高剪切强度为259.6 MPa;对于AgCuZn钎料,当连接温度为1 173 K,连接时间为5 min时,接头的最高剪切强度为125.4 MPa;对于CuP钎料,当连接温度为1 223 K,连接时间为5 min时,接头的最高剪切强度为98.6 MPa;采用TiZrNiCu钎料连接Ti3Al可获得最大接头强度.  相似文献   

11.
TiAl合金与镍基高温合金的扩散连接   总被引:2,自引:2,他引:0       下载免费PDF全文
采用钛为中间层,对TiAl合金与镍基高温合金(GH99)进了扩散连接.研究了扩散连接接头的界面结构和连接温度对界面结构及连接性能的影响,并对连接界面反应层的形成机制进行探讨.结果表明,GH99/Ti/TiAl的界面结构为:GH99/(Ni,Cr)ss/富Ti-(Ni,Cr)ss/TiNi/Ti2Ni/α-Ti+Ti2Ni/Ti(Al)ss/TiAl+Ti3Al/TiAl;随着连接温度的升高,各反应层厚度增加,接头的抗剪强度先增加后减小;在连接温度1 173 K,连接时间30 min,连接压力20 MPa时,抗剪强度最高为260.7 MPa.  相似文献   

12.
采用Ti-50Ni(at%)钎料实现了TZM合金与ZrC_p-W复合材料的真空钎焊连接,通过SEM、EDS、XRD等方法分析了接头界面的微观组织结构,研究了钎焊温度对TZM/Ti-50Ni/ZrC_p-W接头界面组织及性能的影响。结果表明:钎焊接头的典型界面结构为TZM/Ti-Mo+TiNi_3+Mo-Ti-W/Ti Ni+TiNi_3+W(s,s)+(Ti,Zr)C/ZrC_p-W。随着钎焊温度的升高,Ti-Mo固溶体层宽度逐渐增大,线状条纹增多、增宽,组织逐渐粗大,晶界变圆滑;接头的抗剪强度随钎焊温度升高先升高后降低,当钎焊温度为1340℃,保温10 min时,接头获得最大抗剪强度为146 MPa。  相似文献   

13.
通过对比试验优选出了合适钎料,并进行了后续钎焊试验.在钎焊温度800~900℃,保温时间为10 min的条件下,采用Ag-Cu-Ti钎料实现了DD3镍基高温合金与Ti3AlC2陶瓷的真空钎焊连接.利用扫描电镜、能谱仪、XRD等对接头的界面结构进行了分析.结果表明,接头的典型界面结构为DD3/AlNi/Al3(Ni,Cu)5+Al(Ni,Cu)+Agss/(Al,Ti)3(Ni,Cu)5/Al4Cu9+AlNi2Ti+Agss/TiAg/Ti3AlC2.接头的力学性能测试表明,在钎焊温度为850℃,保温时间为10 min的条件下,接头的最高抗剪强度可达135.9 MPa,断裂发生在靠近钎缝的Ti3AlC2陶瓷侧.降低和提高钎焊温度对接头界面组织影响不大,但接头强度有一定程度下降.  相似文献   

14.
采用Al-Si-Mg钎料成功实现了5005铝合金与1Cr18Ni9Ti不锈钢的真空钎焊,借助扫描电镜、能谱分析仪和X射线衍射仪对焊后接头界面组织进行分析,同时对接头抗剪强度进行测试.结果表明,焊后接头界面结构从1Cr18Ni9Ti不锈钢侧到5005铝合金侧的界面组织依次为FeAl,FeAl3,FemAln+αAl.随着钎焊温度的升高或保温时间的延长,接头抗剪强度均呈现先升高后降低的变化趋势.当钎焊温度为580℃,保温时间为15 min时,接头抗剪强度达到最大值49 MPa.接头断裂形式受钎焊温度的影响,当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及FemAln+αAl反应层;温度升高至580℃时,接头断裂于FemAln+αAl反应层中,接头抗剪强度最高.  相似文献   

15.
卞红  田骁  冯吉才  高峰  胡胜鹏 《焊接学报》2018,39(5):33-36,68
采用TiZrNiCu非晶钎料实现了TC4和Ti60异种钛合金的真空钎焊连接,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等分析手段研究了钎焊工艺参数对接头界面组织结构及力学性能的影响. 结果表明,TC4/TiZrNiCu/Ti60钎焊接头的典型界面结构为:TC4/α-Ti+β-Ti+(Ti,Zr)2(Ni,Cu)/Ti60. 随着钎焊温度升高或保温时间延长,片层状α+β相逐渐填充整条钎缝,(Ti,Zr)2(Ni,Cu)相含量减少且分布更加均匀. 接头室温抗拉强度随钎焊温度或保温时间的增加均先增大后减小,在990 ℃/10 min钎焊条件下所获接头抗拉强度达到最大为535.3 MPa. 断口分析结果表明,断裂位于钎缝中,断裂方式为脆性断裂.  相似文献   

16.
采用AgCu28钎料实现了TC4钛合金与QCr0.8铬青铜的真空钎焊,利用SEM, EDS以及XRD等分析方法确定TC4/AgCu/QCr0.8接头的典型界面结构为TC4钛合金/CuTi +Cu3Ti2 +CuTi2/Ag(s,s) +Cu4Ti/Ag(s,s)+Cu(s,s)/QCr0.8铬青铜. 研究了工艺参数对接头组织和性能的影响. 结果表明,随着钎焊温度和保温时间的增加,钎缝中银铜共晶组织减少,钛铜化合物增多. 接头抗剪强度随钎焊温度的升高先增加后降低,在钎焊工艺参数为890 ℃/0 min时,获得最大抗剪强度449 MPa.保温时间的延长使得接头脆性钛铜化合物增多,接头性能下降,因此随保温时间延长接头抗剪强度显著降低.  相似文献   

17.
采用Ti/Ni复合中间层实现了TiAl合金和Ti3AlC2陶瓷的扩散连接,利用SEM,XRD等分析方法对接头界面结构进行了分析.结果表明,TiAl/Ti3AlC2接头典型界面结构为TiAl/Ti3Al+Al3NiTi2/Ti3Al/α-Ti+Ti2Ni/Ti2Ni/TiNi/Ni3Ti/Ni/Ni3(Ti,Al)/Ni3Al+TiCx+Ti3AlC2/Ti3AlC2.随着连接温度的升高,TiAl/Ti界面处的Tiss层逐渐减小,Ti3Al化合物层逐渐变厚;TiNi化合物层厚度显著增加,Ti2Ni和Ni3Ti层厚度基本保持不变.接头抗剪强度随连接温度升高先增加后减小,当连接温度为850℃时,接头的抗剪强度最高可达到85.3 MPa.接头主要在Ni/Ti3AlC2界面及Ti3AlC2基体处发生断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号