首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The focusing of the radiation generated by a polarization current with a superluminally rotating distribution pattern is of a higher order in the plane of rotation than in other directions. Consequently, our previously published [J. Opt. Soc. Am. A24, 2443 (2007)] asymptotic approximation to the value of this field outside the equatorial plane breaks down as the line of sight approaches a direction normal to the rotation axis, i.e., is nonuniform with respect to the polar angle. Here we employ an alternative asymptotic expansion to show that, though having a rate of decay with frequency (mu) that is by a factor of order mu(2/3) slower, the equatorial radiation field has the same dependence on distance as the nonspherically decaying component of the generated field in other directions: It, too, diminishes as the inverse square root of the distance from its source. We also briefly discuss the relevance of these results to the giant pulses received from pulsars: The focused, nonspherically decaying pulses that arise from a superluminal polarization current in a highly magnetized plasma have a power-law spectrum (i.e., a flux density S infinity mu(alpha)) whose index (alpha) is given by one of the values -2/3, -2, -8/3, or -4.  相似文献   

2.
We present a theoretical study of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency Omega) at the same time and that comprises both poloidal and toroidal components. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. We find that the superluminal motion of the distribution pattern of the emitting current generates localized electromagnetic waves that do not decay spherically, i.e., that do not have an intensity diminishing as RP(-2) with the distance RP from their source. The nonspherical decay of the focused wave packets that are emitted by the polarization currents does not contravene conservation of energy: The constructive interference of the constituent waves of such propagating caustics takes place within different solid angles on spheres of different radii (RP) centered on the source. For a polarization current whose longitudinal distribution (over an azimuthal interval of length 2pi) consists of m cycles of a sinusoidal wave train, the nonspherically decaying part of the emitted radiation contains the frequencies Omega +/- momega; i.e., it contains only the frequencies involved in the creation and implementation of the source. This is in contrast to recent studies of the spherically decaying emission, which was shown to contain much higher frequencies. The polarization of the emitted radiation is found to be linear for most configurations of the source.  相似文献   

3.
We calculate the gradient of the radiation field generated by a polarization current with a superluminally rotating distribution pattern and show that the absolute value of this gradient increases as R(7/2) with distance R, within the sharply focused subbeams that constitute the overall radiation beam from such a source. In addition to supporting the earlier finding that the azimuthal and polar widths of these subbeams become narrower (as R(-3) and R(-1), respectively) with distance from the source, this result implies that the boundary contribution to the solution of the wave equation governing the radiation field does not always vanish in the limit where the boundary tends to infinity (as is commonly assumed in textbooks and the published literature). While the boundary contribution to the retarded solution for the potential can always be rendered equal to zero by means of a gauge transformation that preserves the Lorenz condition, the boundary contribution to the retarded solution of the wave equation for the field may be neglected only if it diminishes with distance faster than the contribution of the source density. In the case of a rotating superluminal source, however, the boundary term in the retarded solution for the field is by a factor of the order of R(1/2)larger than the source term of this solution, in the limit where the boundary tends to infinity. This result explains why an argument based on the solution of the wave equation governing the field in which the boundary term is neglected [such as that presented by Hannay, J. Opt. Soc. A 23, 1530 (2006)] misses the nonspherical decay of the field that is generated by a rotating superluminal source. The only way one can calculate the free-space radiation field of an accelerated superluminal source is via the retarded solution for the potential. Our findings have implications also for the observations of the pulsar emission: The more distant a pulsar, the narrower and brighter its giant pulses should be.  相似文献   

4.
Platinum is most commonly used as a filament for Re and Os isotopic measurements, but it contains impurities of Re and Os. Tantalum is low in platinum group elements (PGE) and in Re, but it is not used for negative thermal ionization mass spectrometry because of high electron emission and high reactivity with O(2). High thermal electron emission from Ta distorts the preoptimized ion source optics. In addition, Ta consumes O(2), leaving little for samples, but O(2) is essential for isotopic ratio measurements of PGE and Re as they are measured as negatively charged oxides, such as OsO(3)(-) and PtO(2)(-). These problems are solved by prebaking a filament to remove tantalum oxides before sample loading, keeping relatively high filament temperatures and high O(2) pressures (P(O)((2))) during the sample run, and lowering the potential difference between the filament and the draw-out plate. At P(O)((2)) of ~1 × 10(-)(5) Torr in the source, strong (>10 V) stable (>6 h) peaks of ReO(4)(-), OsO(3)(-), and PtO(2)(-) are obtained at 750 °C for Re, 850 °C for Pt, and over 900 °C for Os. Accurate isotopic ratio measurements of Re, Os, and Pt at picogram levels are possible using Ta filaments.  相似文献   

5.
The authors report families of generalized nondiffracting solutions of the free-space scalar wave equation, and specifically, a subset of these nondiffracting solutions, which are called X waves. These nondiffracting X waves can be almost exactly realized over a finite depth of field with finite apertures and by either broadband or bandlimited radiators. With a 25-mm diameter planar radiator, a zeroth-order broadband X wave will have about 2.5-mm lateral and 0.17-mm axial -6-dB beam widths with a -6-dB depth of field of about 171 mm. A zeroth-order bandlimited X wave was produced and measured in water by a 10 element, 50-mm diameter, 2.5-MHz PZT ceramic/polymer composite J (0) Bessel nondiffracting annular array transducer with -6-dB lateral and axial beam widths of about 4.7 mm and 0.65 mm, respectively, over a -6-dB depth of field of about 358 mm. Possible applications of X waves in acoustic imaging and electromagnetic energy transmission are discussed.  相似文献   

6.
Broad-stripe edge-emitting semiconductor lasers have been used to obtain propagation-invariant (nondiffracting) light beams with powers and diameters of the central ray acceptable for optical manipulation and tweezing. The results of investigations of the propagation of Bessel beams generated from broad-stripe lasers with spectrally selective resonator show that the spatial homogeneity of emission plays a much greater role than the temporal coherence in the formation of Bessel beams. The main factors limiting the length of non-diffracting beam propagation (without distortion of the central ray) are the astigmatism and multimode character of laser radiation.  相似文献   

7.
Magneto-acousto-electrical tomography (MAET) is a potential imaging modality which can provide high-spatial-resolution images of the impedance of conductive media. In MAET, the impedance is reconstructed from the mapped current density distribution J(ab)(r) that would exist in a sample if a current/voltage source were to be applied through measurement electrodes a and b. To map J(ab)(r) without applying a current/voltage source, the sample is placed in a static magnetic field and a focused ultrasonic pulse is directed to a point r to generate a point-like dipole source via the Lorentz force mechanism. The MAET voltage U(ab), which is directly proportional to J(ab)(r), is measured through electrodes a and b for each scanning point. To reconstruct the electrical impedance, we need to map the current density distribution at every point inside the sample. However, with the MAET experimental setup reported in our previous paper on MAET, the MAET signal from a homogenous interior of the sample is undetectable because of the spatially-oscillating nature of the ultrasound field inside the sample. In this paper, we propose to use dual-frequency ultrasound to generate the MAET signal at the difference frequency through the ultrasound radiation force mechanism. The dynamic radiation force causes vibrations inside the sample (and consequently, generates the electric field) with a wavelength much larger than the dimension of the sample along the transducer's axis. Therefore, the MAET signal caused by the radiation force will not be canceled out. We create a dynamic radiation force by applying an amplitude-modulated signal with a modulation frequency fm of several kilohertz and a carrier frequency f(0) of 2.25 MHz to drive the transducer. The dependence of the DF-MAET signal in experiments on the modulation frequency and on the density of the sample agrees with the prediction based on the radiation force mechanism. The spatial resolution of DF-MAET is also studied to verify the radiation force mechanism. Finally, we will prove that the parametric effect in the coupling oil is not a significant source of the DF-MAET signal by imaging a sample at different distances from the transducer. Potential improvements to the present DF-MAET experimental configuration are also discussed.  相似文献   

8.
Bundlelike VO(2)(B) nanostructures were synthesized via a hydrothermal method, and VO(2)(M(1)/R) nanobundles were obtained after a heat-treatment process. Structural characterization shows that these nanobundles are self-assembled by VO(2) nanowires, and VO(2)(M(1)/R) nanobundles have better crystallinity. Temperature-dependent field-emission (FE) measurement indicates that FE properties of these two phases of nanobundles can both be improved by increasing the ambient temperature. Moreover, for the VO(2)(M(1)/R) nanobundles, their FE properties are also strongly dependent on the temperature-induced metal-insulator transitions process. Compared with poor FE properties found in the insulating phase, FE properties were significantly improved by increasing the temperature, and about a three-orders-of-magnitude increasing of the emission current density has been observed at a fixed field of 6 V/μm. Work function measurement and density-functional theory calculations indicated that the decrease of work function with temperature is the main reason that caused the improvement of FE properties. These characteristics make VO(2)(M(1)/R) a candidate material for application of new type of temperature-controlled field emitters, whose emission density can be adjusted by ambient temperature.  相似文献   

9.
Results of experiments for the observation of surface electromagnetic waves (SEWs) in the decameter range (10 and 15 MHz) excited by a vertical dipole and propagating above the ice-coated surface of a salt lake over a distance of up to 1.2 km are considered. It is shown that the SEW decays much more weakly than the “ground” ray. An analysis of the field of radiation from the vertical dipole reveals the presence of a wave with an amplitude decaying with the distance R approximately as 1/R 1/2, which corresponds to the SEW divergence. The absolute values of the radiation attenuation function |W| are significantly greater than unity and reach |W| ≈ 2, which also corresponds to the SEW. Experimental data on the SEW damping agree with the results of numerical calculations of the electromagnetic field in the system under consideration.  相似文献   

10.
采用数值模拟的方法对比性地研究了常闭和常开工作模式下平面栅极型碳纳米管场发射电子源.静电场的数值计算结果显示:常闭工作模式下该电子源中阴极电极的表面电场分布不均匀,边缘处的高电场易导致其上的碳纳米管烧毁,从而引起场发射电流衰减.为了解决此问题,提出将常开工作模式用于该电子源,并证实常开工作模式能够用于该电子源,并有利于解决电流衰减问题.因此,相对于常闭工作模式,常开工作模式更适合平面栅极型碳纳米管场发射电子源.  相似文献   

11.
Ultrasonic nondiffracting transducer for medical imaging   总被引:3,自引:0,他引:3  
The nondiffracting J(0) Bessel beam is evaluated, and its application to medical imaging is suggested. Computer simulations and experimental results for a ten-ring annular Bessel shaded transducer are described. Both continuous-wave (CW) and pulse-wave (PW) excitations are shown and compared to conventional Gaussian beams. The nondiffracting beam has about 1.27-nm radius main lobe with a 20-cm depth of field compared to the Gaussian transducer of the same size with a 1.27-mm radius main lobe at a focus of 12 cm and 2x4-cm depth of field. The side lobes of the nondiffracting beam are the same as the J(0) Bessel function. The effects of heterogeneity due to tissue on the nondiffracting beam and on the focused Gaussian beam are also reported.  相似文献   

12.
Pharmaceuticals represent a group of the new emerging contaminants, which might influence microbial communities in the activated sludge. Nitrification activity and Nitrospira community structure in the small-scale reactors supplied with different concentrations (0, 50, 200, 500 μg L(-1)) of the selected pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid) were evaluated. Ammonia removal was not influenced by selected pharmaceuticals. However, in the two reactors operated with 50 μg L(-1) of pharmaceuticals (R50 and R50P), the effluent concentration of N-(NO(2)(-)+NO(3)(-)) was significantly higher than in the other reactors. Nitrospira community structure was assessed by terminal restriction fragment length polymorphism (T-RFLP) and by cloning and sequencing of the partial genes for 16S rRNA. Nitrospira spp. were detected in all reactors. The two dominant T-RFs represented the sublineages I and II of the genus Nitrospira. Main shifts were observed in the reactors R50 and R50P, where the T-RF representing sublineage II was much higher as compared to the other reactors. Consistent with this, the Nitrospira sublineage II was detected only in the clone libraries from the reactors R50 and R50P. Our results suggest that the relative abundance of Nitrospira sublineage II could be related to the effluent N-(NO(2)(-)+NO(3)(-)) concentration.  相似文献   

13.
Li Y 《Applied optics》2003,42(6):893-895
Ruddick et al. [Appl. Opt. 39, 897 (2000)] extended the standard SeaWiFS atmospheric-correction algorithm for use over turbid coastal and inland waters. However, Ruddick's method is based on the assumption of a spatially homogeneous constant ratio for the water-leaving reflectances normalized by the sun-sea atmospheric transmittance at 765 and 865 nm. Such first-order b(b)/a model-based assumption can result in an inaccuracy for highly turbid water. Using the first- and second-order b(b)/(a + b(b)) models as well as the second-order b(b)/a model (which, more realistically, do not assume spatial homogeneity ratio), we suggest using the modified assumption, R(8)(-1) = alpha0 R(7)(-1) + (l1Q)(-1) (1 - alpha0), instead of Ruddick's assumption, in SeaWiFS atmospheric-correction algorithms for highly turbid waters.  相似文献   

14.
This paper describes a calibrated broadband emitter for the millimeter-wave through terahertz frequency regime, called the aqueous blackbody calibration source. Due to its extremely high absorption, liquid water is chosen as the emitter on the basis of reciprocity. The water is constrained to a specific shape (an optical trap geometry) in an expanded polystyrene (EPS) container and maintained at a selected, uniform temperature. Uncertainty in the selected radiometric temperature due to the undesirable reflectance present at a water interface is minimized by the trap geometry, ensuring that radiation incident on the entrance aperture encounters a pair of s and a pair of p reflections at 45 degrees. For water reflectance R(w) of 40% at 45 degrees in W-band, this implies a theoretical effective aperture emissivity of (1-R(2)(ws)R(2)(wp))>98.8%. From W-band to 450 GHz, the maximum radiometric temperature uncertainty is +/-0.40 K, independent of water temperature. Uncertainty from 450 GHz to 1 THz is increased due to EPS scattering and absorption, resulting in a maximum uncertainty of -3 K at 1 THz.  相似文献   

15.
A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F2Meppy)(PPhMe2)2(H)(Cl), [Ir(F2Meppy)(PPhMe2)2(H)(NCMe)]+ and Ir(F2Meppy)(PPhMe2)2-(H)(CN), [F2Meppy = 2-(2′,4′-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe2 leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F2Meppy)(PPhMe2)2(H)(Cl), [Ir(F2Meppy)(PPhMe2)2(H)-(NCMe)]+ and Ir(F2Meppy)(PPh-Me2)2 (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.  相似文献   

16.
The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10) chip with electron field emission. A dose rate on the order of >1.2 Gy∕min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result.  相似文献   

17.
When a circular electric dipole moment, rotating in the x-y plane, is embedded in a material with relative permittivity ε(r) and relative permeability μ(r), the field lines of energy flow of the emitted radiation are dramatically influenced by the surrounding material. For emission in free space, the field lines swirl around the z axis and lie on a cone. The direction of rotation of the field lines around the z axis is the same as the direction of rotation of the dipole moment. We found that when the real part of ε(r) is negative, the rotation of the field lines changes direction, and hence the energy counter-rotates the dipole moment. When there is damping in the material, due to an imaginary part of ε(r), the cone turns into a funnel, and the density of the field lines diminishes near the location of the source. In addition, all radiation is emitted along the z axis and the x-y plane, whereas for emission in free space, the radiation is emitted in all directions. It is also shown that the displacement of the dipole image in the far field depends on the material parameters and that the shift can be much larger than the shift of the image in free space.  相似文献   

18.
Double-dosimetry algorithm for workers in interventional radiology   总被引:1,自引:0,他引:1  
Based on double-dosemeter readings, a conservative effective dose (E) estimation algorithm for lead apron workers in interventional radiology is proposed. Typical radiation conditions for various exposure geometries were simulated using the MCNPX 2.4.0 code. The simulation model consisted of an X-ray source and image intensifier, a patient phantom and a voxelised staff member phantom with lead apron. The effective staff dose and dosemeter readings for several positions of the worker were calculated. The effective dose to a physician, positioned in close proximity to the primary beam, can be estimated within a 10% underestimation margin by E = 1.64 H(p)(10)(thorax,under) + 0.075 H(p)(10)(neck,over). The dose to the eye lens can be estimated by a dosemeter reading at collar level (R(2) = 0.98).  相似文献   

19.
Electron paramagnetic resonance spectra and dose-response curves are presented for a variety of wallboard samples obtained from different manufacturing facilities, as well as for source gypsum and anhydrite. The intensity of the CO(3)(-) paramagnetic centre (G2) is enhanced with gamma radiation. Isothermal decay curves are used to propose annealing methods for the removal of the radiosensitive CO(3)(-) radical without affecting the unirradiated baseline. Post-irradiation annealing of wallboard prevents recuperation of the radiosensitive CO(3)(-) radical with additional irradiation. A single-aliquot additive dose procedure is developed that successfully measures test doses as low as 0.76 Gy.  相似文献   

20.
In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号