首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluidised beds and high shear mixers are both important in industrial granulation. The binder addition method (pouring, melt-in, spraying) affects the growth and properties of granules and is therefore of vital importance to the fundamental understanding of this detailed process. Non-uniformity of binder distribution is well known in high shear melt granulation, however, there is limited literature surrounding binder distribution in fluidised bed granulation. It was therefore the aim of the paper to compare the binder distribution using alternative addition methods in both high shear mixer and fluidised bed.In this work two binder addition methods, ‘wet’ and ‘dry’, in a fluidised bed and high hear mixer were used to successfully produce granules with a typical pharmaceutical size, 150-300 μm. The granules were analysed for final binder distribution in different size classes using Patent V blue dye and ultra-violet spectrometry.All binder addition methods supported previous work showing non-uniformity of binder distribution throughout the size classes. High shear mixer results show great similarity in binder content whichever binder addition method was chosen. This is likely to be due to the same mechanisms occurring due to the impeller forces in the process, mean while the fluidised bed results show little similarity. The binder distribution by mass is also investigated and shows that although most studies show a relative higher binder content in the larger size classes that actually the majority of binder can instead be found around the mean size of the batch.  相似文献   

2.
The granulation of multi-component particles was conducted in a fast fluidized bed with an atomizing binder solution. The effects of gas velocity and binder droplet diameter on granulation rate, granule size distribution and granule composition were studied. The granulation rate and granule yield were determined by the balance between the agglomeration rate of feed particles and the disintegration rate of granules because there was no secondary granulation. With the increase in gas velocity and the reduction in binder droplet size, the agglomeration rate of feed particles decreased but the disintegration rate of granules increased, resulting in a reduced granule yield. Despite the larger fraction of small particles in the granules, the homogenous granulation of multi-component particles was achieved.  相似文献   

3.
This paper presents a study of the wet granulation of fine cosmetic particles using a high-shear mixer granulator on a given particle and binder system. The shear effect on granule properties is highlighted. The granules formed under different impeller speeds are divided into size classes and further examined in terms of porosity, friability and binder content.

The main result of this study is that, depending on operating conditions, the granulation of a fine powder with a given binding liquid can result in the formation of granules of very different characteristics in terms of size, porosity and friability. Mechanical energy brought to the granulation system is as important as the physicochemical characteristics of the powder–binder pair.  相似文献   


4.
The purpose of this study was to investigate the mechanism behind the water granulation of the hydrophilic polymers HEC and HPMC. To gain insight into this process, properties of the polymers, e.g. molecular weight, viscosity, particle size distribution and interaction with water, were related to torque values measured during the granulation process and to the properties of the dried granules. The torque values in the high shear mixer were determined as function of the binder ratio (g added water per g dry polymer). These methods revealed differences in torque behavior between the polymers, indicating that the viscosity and gelling rate were important parameters determining the torque values. Bimodal particle size distributions for both HEC and HPMC were obtained when performing the granulation in the high shear mixer. A novel granulation mechanism is presented relating the water uptake, the viscosity and the gelling rate to the consolidation and coalescence of the granules. Furthermore, the breakage of the granules is suggested to be limited for hydrophilic granules obtained by water granulation.  相似文献   

5.
Results of a study on the influence of process parameters such as impeller speed, granulation time and binder viscosity on granule strength and properties are reported. A high shear granulator (Cyclomix manufactured by Hosokawa Micron B.V., The Netherlands) has been used to produce granules. Calcium carbonate (Durcal) was used as feed powder and aqueous polyethylene glycol (PEG) as the binder. The dried granules have been analysed for their strength, density and size distribution. The results show that increasing the granulation time has a great affect on granules strength, until an optimum time has been reached. The underlying cause is an increase in granule density. Granules are consolidated more at higher impeller speeds. Moreover, the granule size distribution seems not to be affected significantly by an increase in impeller speed. Granules produced with high binder viscosity have a considerably lower strength, wide strength distribution due to poor dispersion of binder on the powder bed. Binder addition methods have showed no considerable effect on granule strength or on granule size distribution.  相似文献   

6.
In this study, experimentation and modelling were carried out to understand the granulation process. This work assesses whether there is a significant difference in the aggregation rate of the wet granulation process between the very early stages and later stages of high shear granulation. Measurements of the size distribution and binder content from the beginning of the process, just after liquid binder addition, were carried out. A population balance model based on two different kernels, the Equi Kinetic Energy (EKE) kernel and two-dimensional population balance equations with a Size Independent (SI) kernel, was applied to the high shear granulation process. It was concluded that the population balance equations with SI kernel best described the aggregation in the high shear granulation process. The value of aggregation rate constant in the early stages is smaller than aggregation kernel in the later stages.  相似文献   

7.
Theoretical and experimental evidence is given to show that steady states can be reached during agglomerate growth and break-up in high-shear granulation of fine powders. An earlier theoretical model [G.I. Tardos, I.M. Khan and P.R. Mort, Critical parameters and limiting conditions in binder granulation of fine powders, Powder Technology, 94, 245-258 (1997).], based on simple energy-dissipation considerations hinted at the existence of these states at the point where growth is counterbalanced by breakage. Further theoretical evidence is obtained from molecular dynamic simulations of wet and dry particles situated in a constant shear field [I. Talu, G.I. Tardos and M.I. Khan, Computer simulation of wet granulation, Powder Technology, 110, 59-75 (2000).], where the size distribution of initially identical particles, shifts in time to reach a dynamic steady state. Under the conditions of this steady state, the number of breaking agglomerates approximately equals the number of forming ones to yield a time independent final-size distribution.Experimental evidence to support the theoretical findings is obtained during the present research by measuring particle size distributions at line at crucial points during granulation of a typical pharmaceutical powder in a high-shear mixer. In order to reach a steady state, binder addition has to be slow enough and wet massing has to be long enough so that neither has an influence on the final properties of the granules. We show experimentally that if binder is spread properly and homogeneously in the powder and continuous shearing of the wet mass ensures homogeneous, equal growth of the granules, the steady state will only be a function of the total amount of fluid added provided that the shear forces in the machine are maintained constant.These findings are important in that they show that under carefully controlled conditions of binder addition and shear in the mixer, the granulation process is robust and controllable and can, in principle, be scaled up with ease once the powder ingredients and the total amount of binder are fixed.  相似文献   

8.
Wet granulation of previously unreported formulation system is presented. Dolomite powder is granulated under different shear regimes by using three-component binder formulation, water-molasses-polyvinylpyrrolidone. 1-D discretized population balance equation (PBE) and Equi-Partition of Kinetic Energy (EKE) coalescence kernel are applied to modelling granulation in a high shear mixer. Process modelling is focused to simulation of changes of the property of a group of entities, granule size distribution (GSD). The GSD predictions indicate the presence of coalescence growth as a dominant mechanism in the dolomite granulation process. Minor deviations between simulated and real GSDs signify the probability of other granulation mechanism(s) existence. A posteriori approach by integral method was used for coalescence rate constant estimation. This research highlights discrepancy in the coalescence rate of dolomite granulation process, between its early and later stages. Moreover, kinetic analysis of the high shear granulation process provides quantification of the macroscopic variable (impeller speed) influence on regarded property of a group of granules in terms of values of growth rate parameter.  相似文献   

9.
This paper gives results of a study of compacts made from both a free powder mixture and granules made from this same mixture, and produced by two binder granulation techniques: high shear granulation and fluidised bed granulation. The characteristics of the compacts are analysed in terms of colour and aspect derived from their reflectance spectra and related to the flow properties and bulk density of the components forming the compacts.  相似文献   

10.
The evaluation of foam and spray granulation mechanisms and their performances in achieving uniform liquid distribution in a high‐shear mixer‐granulator is presented. A regime map is presented to describe the granulation mechanisms for the foam and spray systems. Foam and spray granulation are shown to successfully create granules of well‐distributed moisture at the end of wet massing despite there was a deviation from the theoretical moisture content at the end of binder addition. In the wetting and nucleation regime, spray granulation involves drop penetration nucleation outside of the drop‐controlled regime, whereas foam granulation operates favorably in the mechanical dispersion regime. For foam granulation, mechanical dispersion produces more uniform granule‐size distributions below the overwetting limit. Spray granulation exhibits steady granule growth, whereas foam granulation shows induction granule growth followed by rapid granule growth. The regime map provides a basis to customize formulations and compare the different foam and spray granulation mechanisms. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2328–2338, 2013  相似文献   

11.
Granulation is a process by which fine powders are agglomerated into larger particles using a liquid binder. In high-shear granulation the powder–binder mix experiences intense agitation inside a mixing vessel as binder is dispersed and granules form and strengthen under the influence of shear and compacting forces in the device.

It is an implicit assumption that in a “high shear” mixer, large forces are transmitted to the powder and this results in a short and efficient granulation process. Owing to these desirable characteristics, high-shear granulation was adopted by several industries including pharmaceuticals and detergents where the process is used almost exclusively. In the work reported here, we attempt to measure shear forces in a moving powder inside a mixer-granulator. The method is based on previous numerical simulations [Powder Technology 110 (2000) 59] and experiments [Journal of Fluid Mechanism 347 (1997) 347] where we showed that at equilibrium between stresses in the mixer and the yield strength of the particles, granules attain a characteristic elongated shape. The measuring method adopted is indirect in the sense that pellets with well-defined mechanical properties were used to interrogate forces inside the granulating vessel at the point where they attain their characteristic elongated shape. We subsequently used the condition of equal shear forces in the device as a scale-up criterion so as to preserve the magnitude of stresses at both scales and thereby to expose forming granules to similar forces in both the small- and large-scale machines.

We found that shear forces in a “High-Shear” mixer-granulator with a vertical axis (Fielder) are actually not always high. The mixer has the potential to produce high shear forces but these forces are transmitted to the powder mass only if the powder is sufficiently cohesive or becomes cohesive due to binder addition. Shear forces in the granulator are strongly wet-mass-dependent and they increase rapidly as soon as a “granulation limit” is achieved, i.e., at the point where granules start to form in the shearing powder mass. We found that granulators with geometrically similar bowls can be scaled to generate comparable shear forces by decreasing the impeller rotational speed of the large machine by the factor (D/d)n, where D and d are the impeller diameters of the large and small machine, respectively, and n is a scaling index that depends on impeller geometry but not on wet mass properties. For the equipment studied in this work, the coefficient n was obtained as 0.80<n<0.85. We also propose an improved granulation process in which dry powders are pre-wetted before introduction into the main granulating device. This scheme has the potential to produce larger shear forces during wetting and binder introduction and thereby improve homogeneity and consequently final granule properties.  相似文献   


12.
This paper, the second of a series, analyzes the effect of binder amount on the kinetics of wet granulation process. Granulation experiments were conducted in batch, lab-scale high shear mixer with formulation system that was initially studied in first part of a series. First, we identify the effect of binder content on the net granulation behaviour during early stage of the process. Single entity property (its size) was accounted only within this research. The results indicate that binder content strongly promotes growth of dolomite entities. Secondly, 1-D discretized population balance equation (PBE) and Equi-Partition of Kinetic Energy (EKE) theory were used to simulate the net granulation process. Tested “coalescence-only” models provide good prediction of real dolomite granule size distributions (GSDs) during early stage of the process for each binder content value. By using modelling procedure granule growth rates were quantified. Ultimate goal of relating the coalescence rates of dolomite entities with binder amount variable is provided. This will result in a better perspective of the meso-scale of the dolomite granulation process.  相似文献   

13.
Size enlargement of particles in fluidized bed granulation involves mixing of particles with a binder liquid to form larger wet granules and drying them to form dry granules. Identification of the time for completion of granulation process is critical as further fluidization of dry granules is providing extra energy for their attrition. Monitoring the bed pressure drop and bed temperature of a batch fluidized bed granulator with time can provide information on the time for completion of the granulation process. Experimental observations on granulation time and size of granules in a lab-scale batch fluidized bed granulator are presented. Model based equations are developed for the estimation of granulation time and size of granules.  相似文献   

14.
This study involves comparing key quality parameters (size, textural) of commercially available breakfast cereal granola with product produced by high shear and fluidised bed granulation processes. Impeller rotational speed was found to be the single most important process parameter which influences granola physical and textural properties in the production of high shear granola. In a fluidised bed granulation process nozzle air pressure and binder spray rate were both found to affect aggregate quality attributes. Overall, the high shear granulation process led to larger, denser, less porous and stronger (less likely to break) aggregates compared with the fluidised bed process.Commercial granola samples were compared with the granola produced in this study and showed a large variation in terms of size and textural properties across the brands investigated. Depending in the type of granola required (for example, to be sold as a stand alone breakfast cereal or as accompaniment to yogurt) different manufacturing processes and process parameters may be recommended. The insights gained from this work can aid in developing processes for the production of granola or similar products to match with consumer and manufacture expectations and requirements.  相似文献   

15.
Wet granule breakage is a significant mechanism, particularly in high shear mixer granulation. This paper presents a study of the wet breakage mechanism using a Breakage Only Granulator. Granules with varying powder and liquid binder properties were created using single drop nucleation. These granules were inserted in a Breakage Only Granulator, a high shear mixer granulator with non-granulating cohesive sand as the bulk medium. Two different impellers were used at impeller speeds of 500 and 750 rpm. An 11° beveled edge impeller was used to create both impact and shear in the granulator, and a flat plate impeller was used to minimize impact and maximize shear in the granulator. The fraction of granules which broke during the granulation process was used as a measure of granule breakage within the granulator. These results were compared with Stokes deformation numbers calculated using mean dynamic peak flow stresses measured in unconfined uni-axial compression tests. Results for the beveled edge impeller blade show increasing breakage with increasing Stokes deformation number. Significant breakage was observed at high Stokes deformation number. Increasing impeller speed increased the magnitude of breakage. The Stokes deformations number appears to be a reasonable predictor for granule breakage within the granulator. Results for the flat plate impeller show very little breakage at 500 rpm, and significant breakage for only one formulation at 750 rpm. This suggests that either impact is dominant over shear for breakage within the granulator, or that the two impeller designs give substantially different collision velocities in the granulator. The impeller speed, type and shape have a profound effect on granule breakage in high shear mixer granulators.  相似文献   

16.
Traditional wet granulation method involves spraying of liquid binder onto a moving powder bed to granulate the powder particles in the granulator. A new alternative method of wet granulation has been developed where foam delivery of binder is used to granulate the powder particles.This study investigated binder distribution in wet granulation and focused on the nucleation stage, where nuclei are formed during the initial binder distribution. Nucleation experiments were used to study the formation of nuclei by the foam and spray delivery methods in a high shear mixer-granulator. The distribution of foams on a dynamic powder bed were also investigated by filming small portion of foams as they penetrated into moving powder beds under different powder flow conditions in a high shear mixer-granulator.Nucleation experiments in this study show that foam delivery tends to create a narrower nuclei size distribution during the early stage of wet granulation process compared to spray delivery at the same processing conditions, demonstrating the potential of foam granulation in achieving improved binder distribution. For foam delivery, the nuclei formation is influenced by the foam properties and powder flow conditions in the granulator. The experiments show that the narrowest nuclei size distribution is obtained by granulating with high-quality foam and intensive powder mixing conditions. Coarser nuclei are formed when low-quality foam is dispersed in a less intensively agitated powder. The interactions of foam quality and the powder flow pattern are discussed and two distinct wetting and nucleation mechanisms are proposed: (1) under bumping flow, a low-quality foam tends to induce localised wetting and nucleation. The wetting and nucleation is “foam drainage” controlled. (2) Under roping flow, foam will be dispersed by the motion of the agitated powder. The wetting and nucleation is “mechanical dispersion” controlled.  相似文献   

17.
Growth mechanisms in high shear mixer granulation were observed over a wide range of particle size and liquid-to-solid (L/S) ratio. The materials used were calcium carbonate (CaCO3; size fractions in the range 1.5 to 85 μm) with a binder of polyethylene glycol 6000 (PEG 6k). The binder, solid at room temperature, was added by the “melt-in” method. A 10 L vertical-axis granulator was used, with a chopper and a four-bladed impeller.

The mean granule size and granule size distribution were measured at regular intervals during the agglomeration process by careful sampling and sieving. The uniformity of binder distribution among the granules was also measured.

The growth behaviours of each grade of primary particles were classified and compared. An induction type mechanism was observed with an initial period of slow growth in mean particle size that lasted 2 to 3 min (the induction period). This was followed by a short rapid growth phase lasting 1 to 2 min. The final stage was a plateau of more or less zero growth. Interestingly, the end of the induction period and the onset of rapid growth corresponded to a change in the granule size distribution from bimodal to monomodal and a similar change in the distribution of binder. Induction period growth rate tended to be lower for granules of finer particles, but these grew more rapidly during the rapid growth stage and produced larger granules than the coarser primary particles.

The liquid-to-solid (L/S) ratio had a significant effect on the growth rate during the rapid growth stage but a minor effect on the granule size distribution and binder distribution. Primary particle size had a significant effect on the final average size of granules, the growth rate during the rapid growth stage and the distribution of granule size and binder.  相似文献   


18.
In this paper a multidimensional model for binder granulation is presented. The particles undergo different transformations such as coalescence, compaction, and breakage. Further chemical reaction in the granules is taken into account in order to incorporate binder solidification which is observed to be a significant transformation in many industrial applications. The equations of the model framework are solved numerically with a direct simulation Monte Carlo (DSMC) algorithm. In addition to the comparison between experiment and simulation, the model framework also enables the study of critical parameters in binder granulation such as reaction rate (solidification of binder) and size of the added binder droplets, which demonstrates its promising potential.  相似文献   

19.
High shear granulation is a common technology for particle size enlargement, but generally the product properties are badly affected by the broad size distribution generated in the process. A recently published approach by Michaels et al. [J.N. Michaels, G. Wang, L. Farber, K.P. Hapgood, J.H. Chou, S. Heidel, and G.I. Tardos, 2006, One-dimensional scale-up of high-shear granulators, Paper 243c, World Congress Particle Technology 5, Orlando (FL)] employs low binder solution spray rates and long granulation times, whilst the solids are kept in roping flow, to avoid coarse formation. The present work applies this approach to a two-component binder system with a dry powder gum and water spray as activation agent. Similarities with fluidised bed granulation and coating processes are explored. The work shows that indeed narrow size distributions of fine granules can be achieved with ease. Dimensionless numbers for spray fluxes are useful to identify operating regimes and to steer optimisation efforts. Comparison of flux numbers for different systems shows that they are not useful (yet) for detailed product and process design. Further work on material-specific quantities controlling nucleation and growth, e.g. particle wetting, is recommended.  相似文献   

20.
A novel two-dimensional rotating agglomerator was developed to carry out the flow induced phase inversion (FIPI) based granulation. The process in this agglomerator shows that a continuous paste flow (mixed with liquid binder and primary particles) is extruded into the interstice of two relatively rotating disks, as the paste becomes solidified due to the loss of heat to the disks, it is then broken into granules by the shearing force imposed by the rotating disk. Experimental measurements have shown that the size of these granules is enlarged along the positive radial direction of the disks. It is also found that these granules contain approximately the same quantity of binder in terms of its volume fraction. The paper thus proposes a population balance (PB) model to describe the growth of the granules by considering a size independent agglomeration kernel. The PB simulated results are found to be well capable of describing the change of the particle size distribution (PSD) of the granules in the radial direction. This study also proposes a velocity profile for the paste flow and attempts to establish a quantitative relationship between the granulation rate and the deformation rate as this would help us understand the mechanism of the agglomeration. It is hoped that this study would be used to improve the design of the agglomerator and to assure the control of the process and the granular product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号