首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
风电功率预测方法综述   总被引:1,自引:0,他引:1  
随着风电接入容量的持续增长,风力发电的间歇性和波动性对电网造成的影响越来越明显,因此风电功率预测方法的研究得到了广泛的关注。准确的风电功率预测可以给电网调度、机组组合操作、风电场运营维护等提供必要的依据。从3个方面对目前的风电功率预测方法和进展进行介绍。首先,介绍了两种确定性预测方法:仅使用历史数据的统计学习方法和使用了NWP(numerical weather prediction)数据的物理模型。其次,介绍了用于提供预测结果不确定度的概率性预测方法。最后,由于风电爬坡事件会对电网造成较大的影响,还介绍了目前风电爬坡事件预测方法的研究和进展。对现有的风电功率预测方法介绍后,提出了目前风电功率预测模型遇到的一些问题以及需要进行深入研究的方向。  相似文献   

2.
为了预防和控制危害性风电功率事件,提出多气象变量模型的组合预测方法,以实现中长期高精度风电功率预测。该方法利用数值天气预报提供的气象数据预测长期风电趋势,同时局部采用多变量模型改善预测精度。为了保证多变量模型的有效性,首先采用Granger因果检测法筛选出对风电功率预测有效的气象变量。其次,针对不同气象变量进行数据结构分析,并根据其动力学特性单独建立合适的预测模型,然后采用线性或非线性机制对不同气象变量预测结果进行组合,完成组合预测模型的建立。最后,通过对实例数据仿真,实现了中长期风电功率预测,并结合误差分析验证了组合预测模型的有效性,且预测结果为后续中长期风电功率事件分析提供了基础。  相似文献   

3.
短期风电功率概率预测有助于调度部门提前安排发电计划,提高风电的消纳能力。提出一种考虑爬坡特性的风电功率概率预测方法,首先通过分析不同风电爬坡定义的特点,阐述互补组合预测的思路;然后采用小波神经网络建立风电功率确定性预测模型,并在其基础上建立不同功率分区内风电爬坡率和风电功率预测误差的二维核密度估计概率预测模型;最后由二者的联合概率分布求取后者的条件概率分布,得到风电功率概率预测结果。仿真结果表明,所提模型具有很高的短期风电功率概率预测精度。  相似文献   

4.
为了满足爬坡预测所需的长期高精度风电功率预测要求,提出基于相似性修正的风电功率爬坡预测方法。该方法首先根据Granger因果检测法提取数值天气预报(numerical weather prediction,NWP)中对风电功率预测有效的气象变量,保证基于气象变量和统计模型的混合预测模型的可实现性,并以支持向量回归模型作为基本预测模型。其次,结合历史数据分析气象背景相似性与爬坡事件相似性,给出相似爬坡事件的选取机制。考虑到较高精度的风电功率预测可提高爬坡预测的性能,为此,结合相似爬坡的功率变化修正风电功率的预测结果,并由误差指标分析验证修正模型的优越性。最后,对实际算例进行仿真分析,验证基于相似性修正的风电功率预测模型的可行性。  相似文献   

5.
随着大规模风电接入电力系统,风电功率爬坡事件对电网的安全稳定运行带来一定的影响。研究爬坡事件发生时的功率预测已越来越迫切。基于极限学习机理论,提出了一种考虑风电功率爬坡事件的超短期功率预测和校正模型。首先,利用最优旋转门算法对当前爬坡事件进行识别,提取爬坡事件特征值,建立模糊C均值聚类模型以得到同类数据,在此基础上,采用极限学习机算法对上述数据进行训练、预测,通过元组向量时间扭曲法在历史风电功率预测爬坡事件库中寻找与当前风电功率预测结果相似的爬坡事件,得到功率预测历史相似爬坡事件。最后,利用功率预测历史匹配值与实际值之间的特征值误差,对风电功率预测结果进行修正。算例表明,所提方法可准确识别风电功率爬坡事件、有效提高风电功率超短期预测精度。  相似文献   

6.
为提高风电功率爬坡预测的准确性,提出了一种基于卷积神经网络、长短期记忆网络和注意力机制的风电功率爬坡预测方法。首先,针对风电功率爬坡发生次数少、特征复杂、预测模型难以对小样本爬坡事件有效学习的问题,使用卷积神经网络对风电功率序列进行特征提取。然后,使用长短期记忆网络建立预测模型,解决风电功率的长时依赖问题,并在模型中加入注意力机制对长短期记忆网络单元的输出进行加权,从而加强风电特征的学习,提高爬坡预测准确度。仿真验证表明,模型对风电功率爬坡预测有较高的准确性。  相似文献   

7.
风电功率的准确预测是减少风电接入电网的不良影响的必要前提。然而风电功率序列在时间上和空间上表现出非平稳性使其难以准确预测,因此提出一种基于集合经验模态分解(EEMD)和深浅层学习组合的短期风电功率组合预测方法,其中深度学习使用稀疏自编码器(SAE)而浅层学习则使用BP神经网络,从而建立EEMD-SAE-BP预测模型。该模型先用EEMD将风电功率原始序列分解为一系列按不同时间尺度分布的分量;然后针对分量中的高频分量建立SAE预测模型,对低频分量则用BP网络建立预测模型;最后将各子序列预测结果叠加得到最终的风电功率预测结果。通过比较几种预测模型的结果,本文提出的预测模型能有效地提高预测精度,有较高的实用价值。  相似文献   

8.
在极端天气情况下,风电功率会在短时间尺度内发生大幅度的变化,出现风电功率高风险爬坡事件,严重威胁电力系统的安全稳定运行。开展爬坡备用的需求评估,有助于减小风电出力波动和预测误差对电网运行带来的不利影响。为保障高比例风电系统的备用充裕度,提出一种基于门控循环单元和非参数核密度估计法的组合区间爬坡备用需求预测方法。首先,将风电功率实际数据和日前预测数据构建成多变量时间序列,基于门控循环单元(gate recurrent unit,GRU)模型提高预测结果的准确度。进而,采用非参数核密度估计方法对风电功率预测误差进行置信区间估计,得出给定置信区间下的风电功率预测区间。最后,根据区间预测结果,预测爬坡事件并提取爬坡特征量,建立爬坡备用需求评估模型,评估得出爬坡备用容量需求。基于西北某省级电网的数据开展了算例测试,验证了所提方法的有效性。  相似文献   

9.
风电功率爬坡是一种严重的风电功率波动情况,对电网稳定性产生了严重的影响。风电功率预测能够提前预测功率爬坡事件,为制定功率爬坡控制策略提供爬坡数据。在当前风电功率爬坡的有限度控制策略基础上,提出了基于分段优化的有限度控制策略。根据风电功率爬坡过程中爬坡率的相对大小,对爬坡过程进行合理分段。最小优化目标函数由爬坡率和弃风量构成。通过在不同区段上设置不同的权重因子来调整分段优化目标,利用二次规划算法最后得出功率参考曲线。仿真结果表明,该功率参考曲线降低了爬坡率、减少了弃风量。  相似文献   

10.
为了满足电力系统优化运行对预测误差区间评估结果越来越高的可靠性要求,改善传统的区间评估方法在发生小概率风电爬坡事件时较差的适应性,提出了一种基于爬坡特征分类和云模型的风电功率预测误差区间评估方法。通过对每类数据分别建立模型以提高不同爬坡类型下评估方法的适应性。首先,利用改进的旋转门算法识别爬坡后得到爬坡特征,并基于爬坡特征对预测误差进行分类,对上爬坡类误差和下爬坡类误差分别建立云模型,对非爬坡类误差采用K-means算法得到不同预测误差类型所对应的区间范围。然后,以风电功率和爬坡特征数据共同作为模型输入,以预测误差类型为输出,建立评估模型,从而得到风电功率预测误差评估区间。最后,利用Elia网站的风电数据进行算例分析。结果表明,所提方法的风电功率误差区间评估效果更优。  相似文献   

11.
风资源因具有较强的波动性、随机性与间断性等特点而导致风电功率预测精度不高。为减小风电功率波动对电网的冲击,提高电力系统对风电的接受与消纳能力,提出了改进的风电功率短期预测方法与基于波动的误差修正方法。首先将风电功率按不同波动过程进行聚类划分,提取不同波动的特征曲线对功率值进行修正;采用引力搜索算法优化的反向传播神经网络(GSA-BP)作为基本预测方法进行预测;分析不同波动过程下的预测误差表现,建立预测误差与综合气象指标的映射关系。针对不同波动过程建立相应的风电功率误差修正模型,提出了线性模型和GSA-BP非线性模型相结合的方式对预测误差进行修正,最后以功率预测值叠加预测误差修正值作为最终预测结果。该风电功率预测误差修正方法不仅涉及风速风向等常规因素,而且考虑到了风电功率的波动性。  相似文献   

12.
杨茂  杜刚 《中国电力》2017,50(1):140-145
风电功率特有的随机波动性,导致风电功率点预测方法的预测精度不高,增加了风电并网的难度,致使风电场弃风现象严重。基于风电功率点预测的基础上,风电功率概率预测可以预测出风电功率的波动范围,为电力系统的安全运行以及电网调度运行给出不确定信息和可靠性评估依据。提出了一种基于t location- scale分布的风电功率概率预测方法,即采用t location-scale函数来描述风电功率预测误差概率分布,并以此建立误差分布,基于已建立的误差分布可以进行概率预测。并引进了覆盖率和平均带宽来评价预测区间的优劣程度。利用吉林省西部某风电场历史数据验证了该方法的可靠性。  相似文献   

13.
为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120 h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%。  相似文献   

14.
基于灰色-辨识模型的风电功率短期预测   总被引:2,自引:0,他引:2       下载免费PDF全文
为了准确预测风电机组的输出功率,针对实际风场,给出一种基于灰色GM(1,1)模型和辨识模型的风电功率预测建模方法,采用残差修正的方法对风速进行预测,得出准确的风速预测序列。同时为了提高风电功率预测的精度,引入FIR-MA迭代辨识模型,从分段函数的角度对风电场实际风速-风电功率曲线进行拟合,取得合适的FIR-MA模型。利用该模型对额定容量为850 kW的风电机组进行建模,采用平均绝对误差和均方根误差,以及单点误差作为评价指标,与风电场的实测数据进行比较分析。仿真结果表明,基于灰色-辨识模型的风电机组输出功率预测方法是有效和实用的,该模型能够很好地预测风电机组的实时输出功率,从而提高风电场输出功率预测的精确性。  相似文献   

15.
随着大规模风电接入电网,风电爬坡事件的风险不断增大,提高爬坡时段风功率预测精度对电网安全经济运行具有重要作用。提出了一种基于气象测量场的爬坡时段区域风功率预测方法。考虑爬坡时段风速场的动态变化,利用经验正交函数分解,将风速资料阵分解成不同空间模态和主分量,通过多元非线性逐步回归方法建立风速场主分量和区域风功率间的映射关系。考虑风速预测误差,采用区间正交函数分解,将上述模型扩展为处理非确定性数据的预测方法。实际区域风功率预测结果表明,所提出的方法能够显著提高风电爬坡时段风功率预测的精度,对存在风速预测误差的情况具有较强的鲁棒性。  相似文献   

16.
针对风电功率预测误差多变分布特点,提出一种基于自适应扩散核密度分布的风电功率预测误差概率模型。利用将高斯核函数转换为线性扩散过程的自适应扩散核密度预测误差分布模型,并采用渐进均方积分误差法为扩散核函数选取自适应最优带宽,提高了风电功率预测误差拟合的局部适应性;其次,分析自适应扩散核密度分布模型在不同预测方法、不同装机容量和不同采样周期下对风电功率预测误差的拟合效果,并与高斯等混合参数模型和固定带宽核密度模型进行对比,验证了所建模型在不同情况下的适用性。  相似文献   

17.
不断提高风电爬坡事件特征量的预测精度对电力系统安全稳定运行意义重大.因此,提出一种爬坡事件特征量与数值天气预报(NWP)气象数据相结合的风电爬坡滚动修正模型.首先,基于PRAA算法获得历史数据库与预测数据库中的所有爬坡事件特征量,建立爬坡特征量预测误差向量矩阵.然后,分析误差向量矩阵与NWP中各气象数据的线性和非线性相关关系,识别影响爬坡特征量预测误差的有效气象指标.最后,基于动态时间规整实现未来与历史数据库中具有相似特征的有效气象指标匹配,得到未来爬坡事件预测误差修正的参考集,并进行滚动修正.算例表明,该修正模型能有效降低爬坡幅值误差,提高爬坡事件预测的精度.  相似文献   

18.
缺少气象数据场景下的超短期风电预测   总被引:1,自引:0,他引:1  
本文对单个风力发电序列进行建模,并提出一种基于小波分解、特征提取和XGBoost+逻辑回归LR(logis?tic regression)且不依赖气象数据风力发电预测模型.提出利用小波分解提取原始风电序列的平均分量和高频分量;分别对平均分量和高频分量进行建模;为了提高模型对数据特征的敏感性,提出了一种将手动提取的特征和...  相似文献   

19.
为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法。首先,以风电场数值天气预报(numerical weather prediction, NWP)为原始输入,基于双层长短期记忆网络(longshort-term memory, LSTM)模型对风电功率进行初步预测。其次,利用极端梯度提升(eXtreme gradient boosting, XGBoost)算法构建误差估计模型,以便在给定未来一段时间内NWP数据的情况下对初步预测误差进行快速估计。然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将初步预测误差分解为不同频段的误差序列,并将其作为附加性反馈输入,对风电功率进行二次预测。进一步在二次预测模型中引入注意力机制,为风电功率预测序列与误差序列动态分配权重,由此引导预测模型在学习过程中充分挖掘学习与误差相关的关键特征。最后,仿真结果表明所提方法可显著提高短期风电功率预测的可靠性。  相似文献   

20.
光伏功率爬坡事件的可靠预测对电力系统运行决策至关重要。针对现有光伏发电功率爬坡事件预测存在误报与漏报的问题,提出了一种考虑日周期性影响的光伏功率爬坡事件非精确概率预测方法。首先,定义了新的光伏爬坡特征量,以有效剔除光伏发电功率中的日趋势性变化。进而,为了避免光伏爬坡样本数据有限可能引发的预测误差,通过结构学习构建了最优信度网络,对光伏功率爬坡事件进行非精确概率预测;其中,信度网络节点关联的非精确条件概率由多状态随机变量的非精确狄利克雷模型统计得到。最后,根据给定气象条件,推理计算各爬坡状态发生的概率区间。基于某光伏电站数据的算例仿真验证了所述方法的有效性,表明所提方法可有效捕捉光伏发电功率变动中由气象条件引发的突变事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号