首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
Traditional principal component analysis (PCA) is a second-order method and lacks the ability to provide higher-order representations for data variables. Recently, a statistics pattern analysis (SPA) framework has been incor-porated into PCA model to make full use of various statistics of data variables effectively. However, these methods omit the local information, which is also important for process monitoring and fault diagnosis. In this paper, a local and global statistics pattern analysis (LGSPA) method, which integrates SPA framework and locality pre-serving projections within the PCA, is proposed to utilize various statistics and preserve both local and global in-formation in the observed data. For the purpose of fault detection, two monitoring indices are constructed based on the LGSPA model. In order to identify fault variables, an improved reconstruction based contribution (IRBC) plot based on LGSPA model is proposed to locate fault variables. The RBC of various statistics of original process variables to the monitoring indices is calculated with the proposed RBC method. Based on the calculated RBC of process variables' statistics, a new contribution of process variables is built to locate fault variables. The simula-tion results on a simple six-variable system and a continuous stirred tank reactor system demonstrate that the proposed fault diagnosis method can effectively detect fault and distinguish the fault variables from normal variables.  相似文献   

2.
基于非线性主元分析和符号有向图的故障诊断方法   总被引:1,自引:1,他引:0       下载免费PDF全文
黄道平  龚婷婷  曾辉 《化工学报》2009,60(12):3058-3062
Nonlinear principal component analysis(NLPCA)fault detection method achieves good detection results especially in a nonlinear process.Signed directed graph(SDG)model is based on deep-going information,which excels in fault interpretation.In this work,an NLPCA-SDG fault diagnosis method was proposed.SDG model was used to interpret the residual contributions produced by NLPCA.This method could overcome the shortcomings of traditional principal component analysis(PCA)method in fault detection of a nonlinear process and the shortcomings of traditional SDG method in single variable statistics in discriminating node conditions and threshold values.The application to a distillation unit of a petrochemical plant illustrated its validity in nonlinear process fault diagnosis.  相似文献   

3.
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in-cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal com-ponent analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar-iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim-ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has superiority in the fault prognosis sensitivity over other traditional fault prognosis methods. ? 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.  相似文献   

4.
A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.  相似文献   

5.
Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Although it is easy to get the residual by transformation matrix in static process, unfortunately, it becomes hard in dynamic process under control loop. Therefore, partial dynamic PCA(PDPCA) is proposed to obtain structured residual and enhance the isolation ability of dynamic process monitoring, and a compound statistic is introduced to resolve the problem resulting from independent variables in every variable subset. Simulations on continuous stirred tank reactor (CSTR) show the effectiveness of the proposed method.  相似文献   

6.
In this paper, an improved nonlinear process fault detection method is proposed based on modified ker-nel partial least squares (KPLS). By integrating the statistical local approach (SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in com-parison to KPLS monitoring.  相似文献   

7.
Purified terephthalic acid (PTA) is an important chemical raw material. P-xylene (PX) is transformed to terephthalic acid (TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to im-prove the product quality, as wel as to visualize the fault type clearly, a fault diagnosis method based on self-organizing map (SOM) and high dimensional feature extraction method, local tangent space alignment (LTSA), is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously, and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process in-dicate that the LTSA–SOM can wel detect and visualize the fault type.  相似文献   

8.
9.
In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.  相似文献   

10.
Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on rich historical or online database is an effective way. A group of data based on bootstrap method could be resampling stochastically, improving generalization capability of model. In this paper, online fault monitoring of generalized additive models (GAMs) combining with bootstrap is proposed for glutamate fermentation process. GAMs and bootstrap are first used to decide confidence interval based on the online and off-line normal sampled data from glutamate fermentation experiments. Then GAMs are used to online fault monitoring for time, dissolved oxygen, oxygen uptake rate, and carbon dioxide evolution rate. The method can provide accurate fault alarm online and is helpful to provide useful information for removing fault and abnormal phenomena in the fermentation.  相似文献   

11.
Principal component analysis (PCA) based pattern matching methods have been applied to process monitoring and fault detection. However, the conventional pattern matching approaches do not specifically take into account the non-Gaussian dynamic features in chemical processes. Furthermore, those techniques are more focused on fault detection instead of fault diagnosis. In this study, a non-Gaussian pattern matching based fault detection and diagnosis method is developed and applied to monitor cryogenic air separation process. First, independent component analysis (ICA) models are built on the normal benchmark and monitored data sets along sliding windows. The IC subspaces from the benchmark and monitored data are then extracted to evaluate the non-Gaussian patterns and detect process faults through a mutual information based dissimilarity index. Further, a difference subspace between the two IC subspaces is computed to characterize the divergence of the dynamic and non-Gaussian patterns between the benchmark and monitored data. Subsequently, the mutual information between the IC difference subspace and each process variable direction is defined as a new non-Gaussian contribution index for fault identification and diagnosis. The presented approach is applied to a simulated cryogenic air separation plant and the monitoring results are compared against those of PCA based pattern matching techniques and ICA based monitoring method. The application study demonstrates that the developed non-Gaussian pattern matching approach can effectively monitor the complex air separation process with superior fault detection and diagnosis capability.  相似文献   

12.
A large amount of information is frequently encountered when characterizing the sample model in chemical process. A fault diagnosis method based on dynamic modeling of feature engineering is proposed to effectively remove the nonlinear correlation redundancy of chemical process in this paper. From the whole process point of view, the method makes use of the characteristic of mutual information to select the optimal variable subset. It extracts the correlation among variables in the whitening process without limiting to only linear correlations. Further, PCA (Principal Component Analysis) dimension reduction is used to extract feature subset before fault diagnosis. The application results of the TE (Tennessee Eastman) simulation process show that the dynamic modeling process of MIFE (Mutual Information Feature Engineering) can accurately extract the nonlinear correlation relationship among process variables and can effectively reduce the dimension of feature detection in process monitoring.  相似文献   

13.
冯立伟  张成  李元  谢彦红 《化工学报》2018,69(7):3159-3166
现代工业产品的生产往往需要多个生产阶段,多阶段生产过程的故障检测成为一个重要问题。多阶段过程数据具有多中心、各工序数据结构不同等特征。针对多阶段过程数据的特征,提出了基于双近邻标准化和主元分析的故障检测方法(DLNS-PCA)。首先寻找样本的双层局部近邻集;其次使用双层局部近邻集的信息标准化样本,得到标准样本;最后在标准样本集上使用主元分析方法进行故障检测。双局部近邻标准化能够将各阶段数据的中心平移到同一点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的数据。进行了青霉素发酵过程故障检测实验,实验结果表明DLNS-PCA方法相对于PCA、KPCA、FDkNN等方法对多阶段过程故障具有更高的检测率。DLNS-PCA方法提高了多阶段过程故障检测能力。  相似文献   

14.
Early fault detection and isolation in industrial systems is vitally necessary to prevent any potential product damage. The paper proposes a new decentralized multi-unit fault isolation methodology in which all the known process faults with similar time signatures are grouped into appropriate categories. An innovative genetic algorithm-based method is introduced to explore for optimum plant zones in a large-scale plant wide search to appropriately configure each architectural unit, having less reliance on excess process variables with redundant and uncorrelated diagnostic information. The methodology employs a set of Bayes and radial basis function neural network classifiers to properly isolate the most usual known faults. A new idea based on transfer entropy algorithm has been integrated in the decentralized configuration to be triggered for isolation of novel faults which have been left unrecognized by the set of maintained classifiers. Experimental results clearly demonstrate that the proposed methods are considerably superior to the conventional centralized methods.  相似文献   

15.
In this research, we develop a new fault identification method for kernel principal component analysis (kernel PCA). Although it has been proved that kernel PCA is superior to linear PCA for fault detection, the fault identification method theoretically derived from the kernel PCA has not been found anywhere. Using the gradient of kernel function, we define two new statistics which represent the contribution of each variable to the monitoring statistics, Hotelling's T2and squared prediction error (SPE) of kernel PCA, respectively. The proposed statistics which have similar concept to contributions in linear PCA are directly derived from the mathematical formulation of kernel PCA and thus they are straightforward to understand. The main contribution of this work is that we firstly suggest a fault identification method especially applicable to process monitoring using kernel PCA. To demonstrate the performance, the proposed method is applied to two simulated processes, one is a simple nonlinear process and the other is a non-isothermal CSTR process. The simulation results show that the proposed method effectively identifies the source of various types of faults.  相似文献   

16.
基于变量子域PCA的故障检测方法   总被引:3,自引:3,他引:0       下载免费PDF全文
王磊  邓晓刚  徐莹  钟娜 《化工学报》2016,67(10):4300-4308
针对工业过程监控中传统主元分析(PCA)方法没有突出局部变量信息的问题,提出一种基于变量子域PCA(variable sub-region PCA,VSR-PCA)的故障检测方法。首先使用PCA将原始数据空间分解成主元子空间(principal component subspace,PCS)和残差子空间(residual subspace,RS),计算变量与PCS的互信息来度量两者的相关性并以此划分变量子域。然后在变量子域中计算局部T2统计量和局部SPE统计量,并通过贝叶斯推理整合所有子域的信息构造全局统计量,使得在利用所有过程信息的同时挖掘局部变量信息。在连续搅拌反应釜系统上的仿真结果表明,VSR-PCA方法具有更好的过程监控性能。  相似文献   

17.
基于稀疏性非负矩阵分解的故障监测方法   总被引:3,自引:3,他引:0       下载免费PDF全文
王帆  杨雅伟  谭帅  侍洪波 《化工学报》2015,66(5):1798-1805
提出了基于稀疏性非负矩阵分解(SNMF)的故障监测方法。非负矩阵分解(NMF)是一种新的降维方法,可以得到原始数据的低秩近似矩阵。与传统的多元统计过程监控方法如主成分分析(PCA)相比,NMF对潜变量的性质没有假设,除了非负性的要求。将稀疏编码和非负矩阵分解方法结合在一起,因为施加了稀疏性的约束,稀疏性非负矩阵分解方法可以得到对数据更稀疏的表示。在分解时对低秩近似矩阵进行正交化处理,从而在降维时除去变量中的冗余信息,将信息集中到更少的投影方向上。然后,用SNMF方法来提取过程的潜变量,并定义新的监测指标来进行故障监测。使用核密度估计(KDE)方法来计算新定义的监测指标的控制上限。最后,将提出的基于SNMF的监测方法应用于TE过程来评估其监测性能,并与基于传统NMF和PCA的方法进行比较。仿真实验结果表明了所提出新方法的可行性。  相似文献   

18.
Principal component analysis (PCA) serves as the most fundamental technique in multivariate statistical process monitoring. However, other than determining contributions to a fault from each variable based on the pre-selected major principal components (PCs), the PCA-based fault diagnosis with an optimal selection of PCs is seldom investigated. This paper presents a novel Gaussian mixture model (GMM) and optimal principal components (OPCs)-based Bayesian method for efficient multimode fault diagnosis. First, the GMM and Bayesian inference is utilized to identify the operating mode, and then local PCA model is established in each mode. Second, given that the various principal components (PCs) may contain distinct fault signatures, the behavior of each PC in local PCA is examined and the OPCs are selected through stochastic optimization algorithm. Based on the OPCs, a Bayesian diagnosis system is then formulated to identify the fault statuses in a probability manner. Performance of GMM–OPC Bayesian diagnosis is examined through a numerical example and the Tennessee Eastman challenge process. The efficiency and feasibility are demonstrated.  相似文献   

19.
This study was performed to develop a Real-Time Risk Monitoring System which helps to do fault detection using the information from plant information systems in a chemical process. In this study, to do fault detection, principal component analysis (PCA) methods of multivariate statistical analysis were used. The fundamental notions are a set of variable combinations, that is, detection of principal components which indicate the tendency of variables and operating data. Besides classical statistic process control, PCA can reduce the dimension of variables with monitoring process. Therefore, they are known as suitable methods to treat enormous data composed of many dimensions. The developed Real-Time Risk Monitoring System can analyze and manage the plant information on-line, diagnose causes of abnormality and so prevent major accidents. It’s useful for operators to treat numerous process faults efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号