首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Swarm algorithms such as particle swarm optimization (PSO) are non-gradient probabilistic optimization algorithms that have been successfully applied for global searches in complex problems such as multi-peak problems. However, application of these algorithms to structural and mechanical optimization problems still remains a complex matter since local optimization capability is still inferior to general numerical optimization methods. This article discusses new swarm metaphors that incorporate design sensitivities concerning objective and constraint functions and are applicable to structural and mechanical design optimization problems. Single- and multi-objective optimization techniques using swarm algorithms are combined with a gradient-based method. In the proposed techniques, swarm optimization algorithms and a sequential linear programming (SLP) method are conducted simultaneously. Finally, truss structure design optimization problems are solved by the proposed hybrid method to verify the optimization efficiency.  相似文献   

2.
Evolutionary algorithms cannot effectively handle computationally expensive problems because of the unaffordable computational cost brought by a large number of fitness evaluations. Therefore, surrogates are widely used to assist evolutionary algorithms in solving these problems. This article proposes an improved surrogate-assisted particle swarm optimization (ISAPSO) algorithm, in which a hybrid particle swarm optimization (PSO) is combined with global and local surrogates. The global surrogate is not only used to predict fitness values for reducing computational burden but also regarded as a global searcher to speed up the global search process of PSO by using an efficient global optimization algorithm, while the local one is constructed for a local search in the neighbourhood of the current optimal solution by finding the predicted optimal solution of the local surrogate. Empirical studies on 10 widely used benchmark problems and a real-world structural design optimization problem of a driving axle show that the ISAPSO algorithm is effective and highly competitive.  相似文献   

3.
In this article, a new proposal of using particle swarm optimization algorithms to solve multi-objective optimization problems is presented. The algorithm is constructed based on the concept of Pareto dominance, as well as a state-of-the-art ‘parallel’ computing technique that intends to improve algorithmic effectiveness and efficiency simultaneously. The proposed parallel particle swarm multi-objective evolutionary algorithm (PPS-MOEA) is tested through a variety of standard test functions taken from the literature; its performance is compared with six noted multi-objective algorithms. The computational experience gained from the first two experiments indicates that the algorithm proposed in this article is extremely competitive when compared with other MOEAs, being able to accurately, reliably and robustly approximate the true Pareto front in almost every tested case. To justify the motivation behind the research of the parallel swarm structure, the computational results of the third experiment confirm the PPS-MOEA's merit in solving really high-dimensional multi-objective optimization problems.  相似文献   

4.
提出了信息熵改进的粒子群优化算法用于解决有应力约束、位移约束的桁架结构杆件截面尺寸优化设计问题.首先介绍了信息熵基本理论和基本粒子群优化算法理论,然后对粒子群优化算法作了合理的参数设置,并将信息熵引入粒子群优化算法的适应函数和停机判别准则中.最后对2个经典的优化问题进行求解并与其他算法进行了比较.数据结果表明信息熵改进后的粒子群优化算法在桁架结构优化设计中优于其他同类算法.  相似文献   

5.
This study proposes particle swarm optimization (PSO) based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables. The original PSO algorithm is modified to include dynamic maximum velocity function and bounce method to enhance the computational efficiency and solution accuracy. The algorithm uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables. A modified game theory (MGT) approach, coupled with the modified PSO, is used to solve multi-objective optimization problems. A dynamic penalty function is used to handle constraints in the optimization problem. The methodologies proposed are illustrated by several engineering applications and the results obtained are compared with those reported in the literature.  相似文献   

6.
This paper compares the performance of three swarm intelligence algorithms for the optimization of hard engineering problems. The algorithms tested were bacterial foraging optimization (BFO), particle swarm optimization (PSO), and artificial bee colony (ABC). Besides the regular BFO, two other variants reported in the literature were also included in the study: adaptive BFO and swarming BFO. Both PSO and ABC were tested using the regular algorithm and variants that include explosion (mass extinction). Three optimization problems of structural engineering were used: minimization of the cost of a welded beam, minimization of the construction cost of a pressure vessel, and minimization of the total weight of a 10‐bar plane truss. All problems are strongly constrained. The algorithms were evaluated using two criteria: quality of solutions and the number of function evaluations. The results show that PSO presented the best balance between these two criteria. For the optimization problems approached in this paper, we can also conclude that the explosion procedure resulted in no significant improvements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a multi-agent search technique to design an optimal composite box-beam helicopter rotor blade. The search technique is called particle swarm optimization (‘inspired by the choreography of a bird flock’). The continuous geometry parameters (cross-sectional dimensions) and discrete ply angles of the box-beams are considered as design variables. The objective of the design problem is to achieve (a) specified stiffness value and (b) maximum elastic coupling. The presence of maximum elastic coupling in the composite box-beam increases the aero-elastic stability of the helicopter rotor blade. The multi-objective design problem is formulated as a combinatorial optimization problem and solved collectively using particle swarm optimization technique. The optimal geometry and ply angles are obtained for a composite box-beam design with ply angle discretizations of 10°, 15° and 45°. The performance and computational efficiency of the proposed particle swarm optimization approach is compared with various genetic algorithm based design approaches. The simulation results clearly show that the particle swarm optimization algorithm provides better solutions in terms of performance and computational time than the genetic algorithm based approaches.  相似文献   

8.
An approach based on an improved particle swarm optimization (PSO) algorithm is proposed for structural damage detection in this study. A disturbance is introduced in the evolution process to avoid the occurrence of premature. The present algorithm focuses on the mutation of global or individual best known positions to guide the swarm to escape from the local minimum. The feasibility and robustness of the modified PSO are verified by three different structures, including a beam, a truss and a plate. The results show that the method is efficient and effective for structural damage identification when measurement noise is considered.  相似文献   

9.
This article presents a particle swarm optimization algorithm for solving general constrained optimization problems. The proposed approach introduces different methods to update the particle's information, as well as the use of a double population and a special shake mechanism designed to avoid premature convergence. It also incorporates a simple constraint-handling technique. Twenty-four constrained optimization problems commonly adopted in the evolutionary optimization literature, as well as some structural optimization problems are adopted to validate the proposed approach. The results obtained by the proposed approach are compared with respect to those generated by algorithms representative of the state of the art in the area.  相似文献   

10.
Present day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima-large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available.  相似文献   

11.
This article proposes a new multiobjective optimization method for structural problems based on multiobjective particle swarm optimization (MOPSO). A gradient-based optimization method is combined with MOPSO to alleviate constraint-handling difficulties. In this method, a group of particles is divided into two groups—a dominated solution group and a non-dominated solution group. The gradient-based method, utilizing a weighting coefficient method, is applied to the latter to conduct local searching that yields superior non-dominated solutions. In order to enhance the efficiency of exploration in a multiple objective function space, the weighting coefficients are adaptively assigned considering the distribution of non-dominated solutions. A linear optimization problem is solved to determine the optimal weighting coefficients for each non-dominated solution at each iteration. Finally, numerical and structural optimization problems are solved by the proposed method to verify the optimization efficiency.  相似文献   

12.
This article investigates multi-objective optimization under reliability constraints with applications in vehicle structural design. To improve computational efficiency, an improved multi-objective system reliability-based design optimization (MOSRBDO) method is developed, and used to explore the lightweight and high-performance design of a concept car body under uncertainty. A parametric model knowledge base is established, followed by the construction of a fully parametric concept car body of a multi-purpose vehicle (FPCCB-MPV) based on the knowledge base. The structural shape, gauge and topology optimization are then designed on the basis of FPCCB-MPV. The numerical implementation of MOSRBDO employs the double-loop method with design optimization in the outer loop and system reliability analysis in the inner loop. Multi-objective particle swarm optimization is used as the outer loop optimization solver. An improved multi-modal radial-based importance sampling (MRBIS) method is utilized as the system reliability solver for multi-constraint analysis in the inner loop. The accuracy and efficiency of the MRBIS method are demonstrated on three widely used test problems. In conclusion, MOSRBDO has been successfully applied for the design of a full parametric concept car body. The results show that the improved MOSRBDO method is more effective and efficient than the traditional MOSRBDO while achieving the same accuracy, and that the optimized body-in-white structure signifies a noticeable improvement from the baseline model.  相似文献   

13.
The high computational cost of complex engineering optimization problems has motivated the development of parallel optimization algorithms. A recent example is the parallel particle swarm optimization (PSO) algorithm, which is valuable due to its global search capabilities. Unfortunately, because existing parallel implementations are synchronous (PSPSO), they do not make efficient use of computational resources when a load imbalance exists. In this study, we introduce a parallel asynchronous PSO (PAPSO) algorithm to enhance computational efficiency. The performance of the PAPSO algorithm was compared to that of a PSPSO algorithm in homogeneous and heterogeneous computing environments for small- to medium-scale analytical test problems and a medium-scale biomechanical test problem. For all problems, the robustness and convergence rate of PAPSO were comparable to those of PSPSO. However, the parallel performance of PAPSO was significantly better than that of PSPSO for heterogeneous computing environments or heterogeneous computational tasks. For example, PAPSO was 3.5 times faster than was PSPSO for the biomechanical test problem executed on a heterogeneous cluster with 20 processors. Overall, PAPSO exhibits excellent parallel performance when a large number of processors (more than about 15) is utilized and either (1) heterogeneity exists in the computational task or environment, or (2) the computation-to-communication time ratio is relatively small.  相似文献   

14.
基于混合PSO算法的桁架动力响应优化   总被引:2,自引:1,他引:1       下载免费PDF全文
摘 要:本文针对以结构动力响应为约束,最小重量为目标的桁架拓扑优化问题,提出了一种将微粒群算法和优化准则法结合的混合PSO算法。利用优化准则法的迭代关系找出群体中适应度最好的微粒,将其作为特殊微粒,其他微粒的寻优采用PSO的基本进化规则,位移响应约束利用特殊微粒的灵敏度信息近似计算。算例的计算结果表明,混合PSO算法适用于受简谐荷载以及脉冲荷载作用桁架结构的拓扑优化。混合PSO的计算效率比PSO算法高,其优化效果比优化准则法好。  相似文献   

15.
Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.  相似文献   

16.
A. Kaveh  S. M. Javadi 《Acta Mechanica》2014,225(6):1595-1605
In this paper, size and shape optimization of truss structures is performed using an efficient hybrid method. This algorithm uses a particle swarm strategy and ray optimizer, and utilizes additional harmony search for a better exploitation. Here, multiple frequency constraints are considered making the optimization a highly nonlinear problem. Some basic benchmark problems are solved by this hybrid method, and the numerical results demonstrate the efficiency and robustness of this method compared to other mathematical and heuristic algorithms.  相似文献   

17.
The objective of this paper is to conduct reliability-based structural optimization in a multidisciplinary environment. An efficient reliability analysis is developed by expanding the limit functions in terms of intermediate design variables. The design constraints are approximated using multivariate splines in searching for the optimum. The reduction in computational cost realized in safety index calculation and optimization are demonstrated through several structural problems. This paper presents safety index computation, analytical sensitivity analysis of reliability constraints and optimization using truss, frame and plate examples.  相似文献   

18.
This work deals with a multi-body system synthesis. A flexible slider crank mechanism has been investigated as an illustrative application. The main interest is focused on the mechanism design variables’ identification based on its dynamic responses. Three responses have been involved such as the slider velocity, the slider acceleration and the mid-point transversal deflection of the flexible connecting rod. Each of these responses has been embroiled separately in a mono-objective optimization. Subsequently, the multi-objective optimization subsuming these responses has been established. Two different optimization methods have been studied namely the genetic algorithm (GA) and the particle swarm optimization (PSO) technique. It has been proved that the multi-objective optimization presents more accurate results beside the mono-objective optimization. Compared to the GA, the PSO is more powerful and is able to identify the mechanism design variable with better accuracy, in spite of the affordable computational time allowed with the GA optimization.  相似文献   

19.
This article introduces a new method entitled multi-objective feasibility enhanced partical swarm optimization (MOFEPSO), to handle highly-constrained multi-objective optimization problems. MOFEPSO, which is based on the particle swarm optimization technique, employs repositories of non-dominated and feasible positions (or solutions) to guide feasible particle flight. Unlike its counterparts, MOFEPSO does not require any feasible solutions in the initialized swarm. Additionally, objective functions are not assessed for infeasible particles. Such particles can only fly along sensitive directions, and particles are not allowed to move to a position where any previously satisfied constraints become violated. These unique features help MOFEPSO gradually increase the overall feasibility of the swarm and to finally attain the optimal solution. In this study, multi-objective versions of a classical gear-train optimization problem are also described. For the given problems, the article comparatively evaluates the performance of MOFEPSO against several popular optimization algorithms found in the literature.  相似文献   

20.
A new approach to the particle swarm optimization (PSO) is proposed for the solution of non-linear optimization problems with constraints, and is applied to the reliability-based optimum design of laminated composites. Special mutation-interference operators are introduced to increase swarm variety and improve the convergence performance of the algorithm. The reliability-based optimum design of laminated composites is modelled and solved using the improved PSO. The maximization of structural reliability and the minimization of total weight of laminates are analysed. The stacking sequence optimization is implemented in the improved PSO by using a special coding technique. Examples show that the improved PSO has high convergence and good stability and is efficient in dealing with the probabilistic optimal design of composite structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号