首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time.  相似文献   

2.
Mixed-model assembly lines are widely used to improve the flexibility to adapt to the changes in market demand, and U-lines have become popular in recent years as an important component of just-in-time production systems. As a consequence of adaptation of just-in-time production principles into the manufacturing environment, mixed-model production is performed on U-lines. This type of a production line is called a mixed-model U-line. In mixed-model U-lines, there are two interrelated problems called line balancing and model sequencing. In real life applications, especially in manual assembly lines, the tasks may have varying execution times defined as a probability distribution. In this paper, the mixed-model U-line balancing and sequencing problem with stochastic task times is considered. For this purpose, a genetic algorithm is developed to solve the problem. To assess the effectiveness of the proposed algorithm, a computational study is conducted for both deterministic and stochastic versions of the problem.  相似文献   

3.
This paper presents ANTBAL, an ant colony optimization algorithm for balancing mixed-model assembly lines. The proposed algorithm accounts for zoning constraints and parallel workstations and aims to minimize the number of operators in the assembly line for a given cycle time. In addition to this goal, ANTBAL looks for solutions that smooth the workload among workstations, which is an important aspect to account for in balancing mixed-model assembly lines. Computational experience shows the superior performance of the proposed algorithm.  相似文献   

4.
To effectively respond to the changing market demands, a manufacturer should produce variety of products with small lots. Thus, multiple products (models) are assembled simultaneously on a same line. However, it is very challenging to balance such an assembly line. This paper conducts a study on balancing a mixed-model assembly line of Type E. To solve this problem, a coloured-timed Petri net model is developed to describe the task precedence relationship. Also, the optimisation problem is formulated as a mathematical programming model. Then, with the models, a two-stage heuristic algorithm is proposed to solve the problem. At the first stage, based on the Petri net model, a P-invariant algorithm (PA) is presented to minimise the number of workstations. At the second stage, a heuristic is proposed to further minimise the cycle time by combining the PA with a binary search algorithm (BSA). Performance of the proposed method is evaluated by an illustrative example and numerical experiments. It is shown that it works well in terms of both solution accuracy and computational efficiency for large size problems.  相似文献   

5.
Growing interests from customers in customised products and increasing competitions among peers necessitate companies to configure their manufacturing systems more effectively than ever before. We propose a new assembly line system configuration for companies that need intelligent solutions to satisfy customised demands on time with existing resources. A mixed-model parallel two-sided assembly line system is introduced based on the parallel two-sided assembly line system previously proposed in the literature. The mixed-model parallel two-sided assembly line balancing problem is illustrated with examples from the perspective of simultaneous balancing and sequencing. An agent-based ant colony optimisation algorithm is proposed to solve the problem. This algorithm is the first attempt in the literature to solve an assembly line balancing problem with an agent-based ant colony optimisation approach. The algorithm is illustrated with an example and its operational procedures and principles are explained and discussed.  相似文献   

6.
As a consequence of increasing interests in customised products, mixed-model lines have become the most significant components of today’s manufacturing systems to meet surging consumer demand. Also, U-shaped assembly lines have been shown as the intelligent way of producing homogeneous products in large quantities by reducing the workforce need thanks to the crossover workstations. As an innovative idea, we address the mixed-model parallel U-shaped assembly line design which combines the flexibility of mixed-model lines with the efficiency of U-shaped lines and parallel lines. The multi-line stations utilised in between two adjacent lines provide extra efficiency with the opportunity of assigning tasks into workstations in different combinations. The new line configuration is defined and characterised in details and its advantages are explained. A heuristic solution approach is proposed for solving the problem. The proposed approach considers the model sequences on the lines and seeks efficient balancing solutions for their different combinations. An explanatory example is also provided to show the sophisticated structure of the studied problem and explain the running mechanism of the proposed approach. The results of the experimental tests and their statistical analysis indicated that the proposed line design requires fewer number of workstations in comparison with independently balanced mixed-model U-lines.  相似文献   

7.
This paper considers the design and balancing of mixed-model disassembly lines with multi-robotic workstations under uncertainty. Tasks of different models are performed simultaneously by the robots which have different capacities for disassembly. The robots have unidentical task times and energy consumption respectively. Task precedence diagrams are used to model the precedence relations among tasks. Considering uncertainties in disassembly process, the task processing times are assumed to be interval numbers. A mixed-integer mathematical programming model is proposed to minimise the cycle time, peak workstation energy consumption, and total energy consumption. This model has a significant managerial implication in real-life disassembly line systems. Since the studied problem is known as NP-hard, a metaheuristic approach based on an evolutionary simulated annealing algorithm is developed. Computational experiments are conducted and the results demonstrate the proposed algorithm outperforms other multi-objective algorithms on optimisation quality and computational efficiency.  相似文献   

8.
Balancing mixed-model assembly lines to reduce work overload   总被引:1,自引:0,他引:1  
We propose a new line balancing approach for mixed-model assembly lines with an emphasis on how the assignment of tasks to stations affects the ability to construct daily sequences of jobs (customer orders) that provide stable workloads (in a minute-to-minute sense) on the assembly line, while also achieving reasonable workload balance among the stations. The issue of short-term workload stability has received little attention in the assembly line balancing literature. Such stability allows assembly workers to complete their tasks without being rushed and thereby contributes to product quality. We propose a new objective for assembly line balancing that helps to achieve better short-term workload stability and develop a heuristic solution procedure based on filtered beam search for this new objective. Computational results show that for small problems (which can be solved optimally), this approach provides near optimal solutions, and for larger problems, it provides significantly better results than traditional assembly line balancing methods.  相似文献   

9.
The mixed model assembly line is becoming more important than the traditional single model due to the increased demand for higher productivity. In this paper, a set of procedures for mixed-model assembly line balancing problems (MALBP) is proposed to make it efficiently balance. The proposed procedure based on the meta heuristics genetic algorithm can perform improved and efficient allocation of tasks to workstations for a pre-specified production rate and address some particular features, which are very common in a real world mixed model assembly lines (e.g. use of parallel workstations, zoning constraints, resource limitation). The main focus of this study is to study and modify the existing genetic algorithm framework. Here a heuristic is proposed to reassign the tasks after crossover that violates the constraints. The new method minimises the total number of workstation with higher efficiency and is suitable for both small and large scale problems. The method is then applied to solve a case of a plastic bag manufacturing company where the minimum number of workstations is found performing more efficiently.  相似文献   

10.
Despite many pioneering efforts and works over the past decades, stochastic events have not been studied extensively in mixed-model assembly lines thus far. For a mixed-model sequencing problem with stochastic processing times, this paper aims to minimise expected total work overload. It also focuses on the most critical workstation of the line. In practice, this assumption is useful when the whole or a big portion of the assembly line is considered as a single station. In order to tackle the problem, a dynamic programming (DP) algorithm as well as two greedy heuristics from the literature is employed. However, it is realised that the DP cannot guarantee the optimal sequence neither for stochastic nor deterministic problems. It is because the calculation of work overload is involved in a recursive procedure that affects the states’ value functions. Therefore, by the use of network representation, the problem is modelled as a shortest path problem and a new heuristic, inspired by Dijkstra’s algorithm is developed to deal with it. Numerical results show that the proposed method outperforms other algorithms strongly. Finally, some discussion is provided about why one should consider stochastic parameters and why the proposed heuristic performs well in this regard.  相似文献   

11.
In this paper, a novel stochastic two-sided U-type assembly line balancing (STUALB) procedure, an algorithm based on the genetic algorithm and a heuristic priority rule-based procedure to solve STUALB problem are proposed. With this new proposed assembly line design, all advantages of both two-sided assembly lines and U-type assembly lines are combined. Due to the variability of the real-life conditions, stochastic task times are also considered in the study. The proposed approach aims to minimise the number of positions (i.e. the U-type assembly line length) as the primary objective and to minimise the number of stations (i.e. the number of operators) as a secondary objective for a given cycle time. An example problem is solved to illustrate the proposed approach. In order to evaluate the efficiency of the proposed algorithm, test problems taken from the literature are used. The experimental results show that the proposed approach performs well.  相似文献   

12.
Assembly lines of big-size products such as buses, trucks and helicopters are very different from the lines studied in the literature. These products’ manufacturing processes have a lot of tasks most of which have long task times. Since traditional assembly line models including only one worker in each station (i.e. simple assembly lines) or at most two workers (two-sided assembly lines) may not be suitable for manufacturing these type of products, they need much larger shop floor for a number of stations and long product flow times. In this study, an assembly line balancing problem (ALBP) with parallel multi-manned stations is considered. Following the problem definition, a mixed integer programming formulation is developed. A detailed study of priority rules for simple ALBPs is also presented, and a new efficient constructive heuristic algorithm based on priority rules is proposed. In order to improve solutions found by the constructive heuristic, a genetic algorithm-based solution procedure is also presented. Benchmark instances in the literature are solved by using the proposed mathematical programming formulation. It has been seen that only some of the small-size instances can be solved optimally by this way. So the efficiency of the proposed heuristic method is verified in small-size instances whose optimal solutions are found. For medium- and big-size instances, heuristics’ results and CPU times are demonstrated. A comparative evaluation with a branch and bound algorithm that can be found in the literature is also carried out, and results are presented.  相似文献   

13.
In a mixed-model assembly line (MMAL), varying models of the same basic product are produced in a facultative sequence. This gives rise to the short-term model sequencing problem, which has to decide on the production sequence of a given number of model copies so that work overload is minimised. Recently, many MMALs have been arranged in ‘U-lines’, where one operator supervises both the entrance and the exit. This paper addresses the model sequencing problem on a paced mixed-model U-line in a cyclic production environment. Some useful properties of the problem are characterised, and the problem is formulated to minimise the steady-state work overload. A branch-and-bound algorithm is proposed to solve small-sized problems, and a heuristic is proposed for practical-sized problems. Numerical experiments on 540 randomly generated instances show that the proposed heuristic can find near-optimal solutions efficiently.  相似文献   

14.
This study deals with the balancing problem of a manual mixed-model assembly line, where the production volume or the product mix changes from shift to shift during the planning horizon. The unstable demand can be characterised by several representative scenarios, and the line uses overtime work to meet the demand variation. The balancing problem concerns how to assign assembly tasks to stations and determine the amount of overtime in each possible demand scenario. The objective is to satisfy the demand in each possible scenario with the minimum labour costs paid for both normal shifts and overtime work. A lower bound on the labour costs is proposed, and a heuristic algorithm is developed to quickly find a feasible solution. A branch, bound and remember (BB&;R) algorithm is then proposed to find better solutions. These solution methods are tested on 765 instances. The BB&;R algorithm obtains optimal solutions for 510 instances and gives high-quality solutions for the remaining 255 instances within 60?s. The experimental results show that the use of overtime work and adjustable cycle times significantly reduces the labour costs, especially when the demand or task processing time variations are large.  相似文献   

15.
The mixed-model U-line balancing problem was first studied by Sparling and Miltenburg (Sparling, D. and Miltenburg, J., 1998. The mixed-model U-line balancing problem. International Journal of Production Research, 36(2), 485–501) but has not been mathematically formulated to date. This paper presents a mixed integer programming formulation for optimal balancing of mixed-model U-lines. The proposed approach minimises the number of workstations required on the line for a given model sequence. The proposed formulation is illustrated and tested on an example problem and compared with an existing approach. This paper also proposes a new heuristic solution procedure to handle large scale mixed-model U-line balancing problems. A comprehensive experimental analysis is also conducted to evaluate the performance of the proposed heuristic. The results show the validity and usefulness of the proposed integer formulation and effectiveness of the proposed heuristic procedure.  相似文献   

16.
Mixed-model assembly lines are widely used in a range of production settings, such as the final assembly of the automotive and electronics industries, where they are applied to mass-produce standardised commodities. One of the greatest challenges when installing and reconfiguring these lines is the vast product variety modern mixed-model assembly lines have to cope with. Traditionally, product variety is bypassed during mid-term assembly line balancing by applying a joint precedence graph, which represents an (artificial) average model and serves as the input data for a single model assembly line balancing procedure. However, this procedure might lead to considerable variations in the station times, so that serious sequencing problems emerge and work overload threatens. To avoid these difficulties, different extensions of assembly line balancing for workload smoothing, i.e. horizontal balancing, have been introduced in the literature. This paper presents a multitude of known and yet unknown objectives for workload smoothing and systematically tests these measures in a comprehensive computational study. The results suggest that workload smoothing is an essential task in mixed-model assembly lines and that some (of the newly introduced) objectives are superior to others.  相似文献   

17.
This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.  相似文献   

18.
A mixed-model assembly U-line is a flexible production system capable of manufacturing a variety of similar models, and it has become popular as an important component of the just-in-time production system. However, it poses new challenges for the optimal design of assembly lines because both the task assignment and the production sequence affect the workload variance among workstations. As a consequence, this paper addresses the line balancing problem and the model sequencing problem jointly and proposes a 0–1 stochastic programming model. In this model, task times are assumed to be stochastic variables independently distributed with normal distributions and the objective is to minimise the expectation of work overload time for a given combination of cycle time and number of workstations. To solve the problem, a simulated annealing-based algorithm is developed, which can also be used to minimise the absolute deviation of workloads in a deterministic environment. The experimental results for a set of benchmark problems show that the proposed algorithm outperforms the existing algorithms in terms of solution quality and running time.  相似文献   

19.
Implementation of mixed-model U-shaped assembly lines (MMUL) is emerging and thriving in modern manufacturing systems owing to adaptation to changes in market demand and application of just-in-time production principles. In this study, the line balancing and model sequencing (MS) problems in MMUL are considered simultaneously, which results in the NP-hard mixed-model U-line balancing and sequencing (MMUL/BS) problem. A colonial competitive algorithm (CCA) is developed and modified to solve the MMUL/BS problem. The modified CCA (MCCA) improves performance of original CCA by introducing a third type of country, independent country, to the population of countries maintained by CCA. Implementation details of the proposed CCA and MCCA are elaborated using an illustrative example. Performance of the proposed algorithms is tested on a set of test-bed problems and compared with that of existing algorithms such as co-evolutionary algorithm, endosymbiotic evolutionary algorithm, simulated annealing, and genetic algorithm. Computational results and comparisons show that the proposed algorithms can improve the results obtained by existing algorithms developed for MMUL/BS.  相似文献   

20.
A mixed-model assembly line is a type of production line which is used to assemble a variety of product models with a certain level of similarity in operational characteristics. This variety causes workload variance among other problems resulting in low efficiency and line stops. To cope with these problems, a hierarchical design procedure for line balancing and model sequencing is proposed. It is structured in terms of an amelioration procedure. On the basis of our evolutionary algorithm, a genetic encoding procedure entitled priority-based multi-chromosome (PMC) is proposed. It features a multi-functional chromosome and provides efficient representation of task assignment to workstations and model sequencing. The lean production perspective recognises the U-shape assembly line system as more advanced and beneficial compared to the traditional straight line system. To assure the effectiveness of the proposed procedure, both straight and U-shape assembly lines are examined under two major performance criteria, i.e., number of workstations (or line efficiency) as static criterion and variance of workload (line and models) as dynamic criterion. The results of simulation experiments suggest that the proposed procedure is an effective management tool of a mixed-model assembly line system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号