首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用脉冲激光沉积技术,在Si(100)基片上制备了BCN薄膜,研究了沉积温度和退火处理对BCN薄膜组分和结构的影响。利用傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对制备的BCN薄膜进行了表征。结果表明:沉积温度升高时,BCN薄膜的组分无明显改变。所制备的BCN薄膜包含B—N,C—B和C—N化学键,是由杂化的B—C—N键构成的化合物。真空退火温度为700℃时,BCN薄膜结构稳定;大气退火温度达到600℃时,BCN薄膜表面发生氧化分解,同时有C≡N键形成,表明C≡N键具有较好的高温热稳定性。  相似文献   

2.
Thin films of cadmium sulfide with very well defined preferential orientation and relatively high absorption coefficient were fabricated by thermal evaporation technique. The research is focused to the fabrication and characterization of the compositional data of CdS thin films obtained by using X-ray diffraction, scanning electron microscope along with energy dispersive X-ray spectroscopy. The optical properties were studied by using a UV-VIS-NIR spectrophotometer. The effects of silver-doping by ion exchange process on the properties of as-deposited CdS thin films have been investigated.  相似文献   

3.
Effect of annealing on pulsed laser deposited zirconium oxide thin films   总被引:1,自引:0,他引:1  
Zirconium oxide thin films were deposited using pulsed laser ablation from a ceramic ZrO2 target on unheated substrates. Subsequently, the films were annealed in air in the temperature range 400-800 °C. The films were characterized by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and optical spectroscopy to investigate the variation of the structural, chemical, and optical properties upon annealing. As-deposited films were amorphous and had a large surface density of ablated particles. Annealing resulted in the growth of monoclinic nano-crystalline, uniform, and transparent films that were slightly sub-stoichiometric. The annealed films were compact and had high values of the refractive index. Extinction coefficients were small, and may be related to the presence of defects. The films exhibited the presence of an indirect band gap, related to defects, and a direct band gap, related to fundamental absorption.  相似文献   

4.
Ultrasonic agitation was applied during the chemical bath deposition of CdS thin films. Ultrasonication resulted in a dramatic change in the surface morphology, growth rate, and optical properties of CdS films. There were virtually no colloidal particles adsorbed on the surface. The surface roughness measured by atomic force microscopy was reduced by a factor of two. Band gap energy increased to 2.39 eV from 2.37 eV. X-ray patterns showed that the preferred orientation changed from hexagonal (002)/cubic (111) to hexagonal (101). Optical transmission improved in the wavelength range larger than 520nm. The chemical reaction for CdS formation started at a lower temperature under ultrasonication, and dense films were obtained even when the chemical composition of the aqueous solution deviated far from optimum conditions.  相似文献   

5.
Diamond like carbon (DLC) thin films with metallic interfacial layers of aluminum and nickel-chromium (Al and Ni-Cr) were grown using a low cost hybrid technique involving a resistive heating thermal evaporator and radio frequency plasma enhanced chemical vapor deposition techniques. Stress, hardness, elastic modulus, bonding, phase, and electrical conductivity of these films were investigated. Introduction of interfacial Al and Ni-Cr layers in DLC led to drastic improvement of its conductivity along with a significant reduction in residual stress but with some reduction of hardness and the elastic modulus. The structural and surface properties of thin films were studied using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques.  相似文献   

6.
SYNTHESIS AND THERMAL STABILITY OF NANOCOMPOSITE nc-TiN/a-TiB2 THIN FILMS   总被引:1,自引:0,他引:1  
Several nc-TiN/a-TiB2 thin films comprised of nanocrystalline (nc-) TiN and amorphous (a-) TiB2 phases were deposited on Si(100) at room temperature by reactive unbalanced dc magnetron sputtering, followed by vacuum annealed at 400, 600, 800 and 1000℃ for 1h, respectively. Effects of B content on microstructure, mechanleal behaviors and thermal microstructure stability have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and nanoindentation measurements. The results indicated that B addition greatly affected both microstructure and mechanical behavior of nc-TiN/a-TiB2 thin films. With increusing B content the grain size decreused. A maximum hardness value of about 3.3GPa wus obtained at B content of about 19at.%. The improved mechanical properties of nc-TiN/a-TiB2 films with the addition of B into TiN were attributed to their densified microstructure with development of fine grain size. Only addition of sufficient B could restrain grain growth during annealing. High B content resulted in high microstructure stability. The crystallization of amorphous matrix occurred at about 800℃, forming TiB or TiB2 crystallite, depending on B content. Before that no change in bonding configuration was found.  相似文献   

7.
CdS thin films were deposited by the ion layer gas reaction (ILGAR) method. Structural, chemical, topographical development as well as optical and electrical properties of as-deposited and annealed thin films were investigated by XRD,SEM, XPS, AFM and UV-VIS. The results showed that the thin films are uniform, compact and good in adhesion to the substrates, and the growth of the films is 2.8 nm/cycle. The evolution of structure undergoes from the cubic structure to the hexagonal one with a preferred orientation along the (002) plane after annealing at 673 K. An amount of C, O and C1 impudries can be reduced by increasing the drying temperature or by annealing in N2 atmosphere. It was found that the band gap of the CdS films shifts to higher wavelength after annealing or increasing film thickness. The electrical resistivity decreases with increasing annealing temperature and film thickness.  相似文献   

8.
目的 提高316 L不锈钢表面的光催化和亲水性能.方法 通过等离子表面合金化技术在316 L不锈钢表面制备结合良好的TiN薄膜,然后对TiN薄膜进行热氧化,得到N掺杂TiO2薄膜.利用X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜及紫外-可见分光光度仪对制备的N掺杂TiO2薄膜进行表征,并通过光催化实验和亲水性实验考察其光催化性能和亲水性.结果 经过空气中450℃氧化处理2 h的薄膜中存在锐钛矿晶型的TiO2,样品中的N元素取代了部分O.未掺杂TiO2和N掺杂TiO2的带隙宽度分别为3.25、3.08 eV.经热氧化处理后,薄膜表面致密,无裂纹和微孔,均匀分布着尺寸相近的微小凸起物.经可见光照射150 min后,N掺杂TiO2薄膜对亚甲基蓝溶液的最终降解率为20%.此外,N掺杂TiO2薄膜具有较高的亲水性,可见光照射下,30min内接触角降为8.5°.结论 N掺杂TiO2薄膜能有效提高316 L不锈钢表面的光催化和亲水性能.  相似文献   

9.
The thermal stability of siloxane films deposited on Vycor glass and silicon substrates using atmospheric pressure plasma was studied. Siloxane films were deposited from a liquid tetraethyl orthosilicate (TEOS) precursor which was nebulised into a helium/oxygen plasma. The thickness of the siloxane films was in the range 1-12 nm as measured using both ellipsometry and X-ray reflectometry. Film composition and chemical properties were examined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis. The thermal stability of the films was evaluated under argon atmosphere at temperatures up to 700 °C. The films were found to exhibit good adhesion without cracks or delamination after the thermal treatment. A decrease in coating thickness and a reduction in surface roughness was however observed indicating, a change in coating chemistry. This was confirmed by the reduction in carbon concentration observed by XPS. Particulates generated by excess gas phase reaction of TEOS were observed on the surface of the coating. A larger reduction in particulates size was observed after thermal treatment compared with the reduction in thickness of the bulk coating. This indicates that the particulates may have a different composition to that of the coating.  相似文献   

10.
Thin films of aluminium incorporated Fe2O3, synthesized by simple chemical spray pyrolysis on to glass substrates using aqueous solutions of analytical reagent grade ferric trichloride and aluminium nitrate as precursors. The influence of aluminium doping on to morphological properties, contact angle, X-ray photoelectron spectroscopy, photoluminescence and thermal conductivity properties have been investigated. The preparative parameters have been optimized to obtain good quality thin films which are uniform and well adherent to the substrate. The FE-SEM and AFM micrographs depict the films are compact and homogeneous (spindle-shaped hematite nanostructures) with varying grain sizes (average grain size ~ 20-60 nm). Contact angle measurement show the films are hydrophobic in nature. The chemical composition and valence states of constituent elements in Fe2O3 are analyzed by X-ray photoelectron spectroscopy. The excitonic strong violet emission has been observed in photoluminescence. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in these polycrystalline films. We studied interparticle interactions like grains, grain boundary effects using complex impedance spectroscopy.  相似文献   

11.
The paper reports on preparation of titanium (IV) oxide thin films by a series of chemical, physico-chemical and physical methods including the sol-gel process carried out in the environment of lyotropic liquid crystals, Barrier-torch Discharge deposition, Magnetron Sputtering and the Modulated Hollow Cathode Plasma Jet Sputtering. The produced layers have been thoroughly described by means of a series of characterization techniques including atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, Fourier transformed infrared spectroscopy, Raman spectroscopy, ellipsometry, profilometry and surface wettability. The films were then used as photoactive species in catalytic oxidation tests based on photoinduced decomposition of methylester of stearic acid.  相似文献   

12.
Undoped zinc oxide and iron-doped zinc oxide thin films have been deposited by the sol-geldipcoating method. The Fe/Zn nominal volume ratio was 5% in the solution. The effects of Fe incorporation on morphological, structural, and optical properties of ZnO films were investigated. The scanning electron microscopy measurements showed that the surface morphology of the prepared thin films was affected by Fe doping. The X-ray diffraction patterns of the thin films showed that doped incorporation leads to substantial changes in the structural characteristics of ZnO thin films. The optical absorption measurements indicated a band gap in the range of 3.31 to 3.19 eV. The X-ray photoelectron spectroscopy demonstrated that Fe is incorporated in the ZnO matrix with 6.5 atomic percent (at %). The energy dispersive spectroscopy studies indicated the formation of ZnO with high efficiency.  相似文献   

13.
1.IntroductionZnO especially in the form ofthin film shasbeen attracting attention because ofits m any applica-tions,such astransparentelectrodes,varistors,phosphors,gassensors,surface acousticw ave devicesandpiezoelectric actuators[1,2].M ore recently,re…  相似文献   

14.
采用电子束蒸发技术制备碳化硼薄膜,利用X射线衍射(XRD)分析了薄膜的结构,测量了薄膜的X射线光电子能谱(XPS),并利用原子力显微镜(AFM)对薄膜进行表面分析.XRD结果表明:薄膜的结晶性随着衬底温度的升高逐渐转好,在较低的衬底温度下制备出多晶碳化硼薄膜.XPS分析得到了碳化硼薄膜表面的化学成分和结构特性,其主要成分为B_4C.AFM结果表明,薄膜表面光滑平整、均匀致密,随着衬底温度的升高薄膜均方根(RMS)粗糙度逐渐增大.  相似文献   

15.
The structural, surfacial and nanoscale mechanical properties evolution of Ti-Ni-Cu thin films, prepared by the co-sputtering of TiNi and Cu targets during rapid thermal annealing (RTA) were investigated. Crystallization took place in a few seconds at 480 °C. With increasing annealing time (up to 180 s), roughness increased dramatically, and was far more prominent than in films crystallized by conventional thermal annealing (CTA). Although RTA is energy efficient due to the lower annealing time, the film roughness is less ideal than CTA, which may prove limiting in specific applications. The surface and subsurface chemical states of Ti, Ni and Cu was similar for RTA and CTA processed materials, demonstrating they are exposed to comparable redox potentials during annealing. Using X-ray absorption spectroscopy (XAS), it was found that the RTA (180 s) and CTA (1 h) films possessed longer range order. The evolution of nanoscale mechanical properties of the RTA films during rapid thermal annealing was also studied.  相似文献   

16.
1. IntroductionTiOz thin films have excellent properties sucl1 as l1igh ref1actitre il1dex, outstal1diugoptical tra11sl11ittallce, high dielectric constant and physical chemical stabilityll'2]. Recently',the TiO2 thi1l films have drawn more attel1tions oll photocatalysis, optical coating, al1dsolar cell fab.ication[3'4l. In this work we deposited Ti thin film on glass substrate b}-nlagl1etroll sputterillg lllethod and allllealing Ti tl1in fi1l11 to fOrlll TiO2 tl1ill fi1m.2. ExperimelltalT…  相似文献   

17.
The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO2 films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0-° are obtained by the addition of 10%-20% SiO2 in mole fraction.  相似文献   

18.
《Synthetic Metals》2007,157(22-23):997-1003
Transparent conductive thin films were fabricated by the chemical assembly of carboxylated single-walled carbon nanotubes (ca-SWNTs) onto aminosilane-modified glass plates. The ca-SWNTs were deposited with multilayer structures by amidation reaction between the carboxylic acid groups of ca-SWNTs and amino groups of linker molecules with the aid of coupling agents. Unlike the chemically assembled SWNT layers reported thus far, these SWNT assemblies have high-density structures and excellent surface adhesion due to direct chemical bonding to their substrates, which results in high electrical conductivity. The covalent bonds of the SWNT thin film were characterized by X-ray photoelectron spectroscopy, and the structures of SWNTs in the conductive thin film were analyzed by Raman spectroscopy. Imaging by scanning electron microscopy shows that the SWNT thin film has a uniform morphology with high-density multilayer structure over large areas, and UV–vis spectroscopy analysis shows that the transmittance of SWNT thin film in visible light region is excellent and further improved to greater than 90% upon thermal treatment at 250 °C. The electrical resistivities of the ca-SWNT thin film were found to be 5–10 Ω cm, which was improved to 0.2–0.4 Ω cm by the thermal treatment. The work function measured by photoelectron spectroscopy in air was found to be 5.12 eV.  相似文献   

19.
Precursor structures of CuGa/In/CuGa stacking layers were prepared on Mo/soda-lime glass by sequential sputtering using intermetallic CuGa and metal In targets, with post selenization by Se evaporation at substrate temperature 500 °C. The selenized CIGS thin films were characterized by X-ray photo electron spectroscopy, X-ray diffraction, energy dispersive spectroscopy, Field emission scanning electron microscopy (FE-SEM), and Photoluminescence (PL). XPS survey spectra show that the constituent elements such as Cu, Ga, In, and Se appeared on the surface composition with corresponding photoelectron lines and a detailed study of the Se 3d signal in the CIGS absorption layer was discussed. The X-ray diffractograms of the CIGS films exhibited peaks revealing that the films are crystalline in nature with tetragonal chalcopyrite structure. FESEM images reveal that CIGS thin films yield granular nanostructure and a Mo back contact with a columnar structure. The CIGS thin films demonstrated intense near-band-edge PL and free-to-bound transitions were found and reported.  相似文献   

20.
Compounds of the B-C-N system are very promising to produce superhard coatings with good tribological, chemical and thermal properties. Consequently, BCN films were prepared by plasma enhanced chemical vapor deposition (PECVD). The films were deposited from gaseous mixtures of BCl3-C2H4-N2-H2-Ar in different unipolar and bipolar pulsed glow discharges at 550℃ and analyzed with respect to composition, electronic structure and mechanical properties. The micro structure and composition of the BCN films were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy (REELS). Mechanical properties were characterized using both the traditional Vickers method and nanoindentation. The films, that were deposited using a bipolar pulsed generator, were weak and had a sponge-like structure, whereas the films prepared using an unipolar generator were well adherent, had a hardness of more than 11GPa and very high e  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号