首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrogen chemistry in thin films and biological systems is one of the most difficult experimental problems in today's science and technology. We successfully tested a novel solution, based on the spectroscopic version of scanning near-field optical microscopy (SNOM). The tunable infrared radiation of the Vanderbilt free electron laser enabled us to reveal clearly hydrogen-decorated grain boundaries on nominally hydrogen-free diamond films. The images were obtained by SNOM detection of reflected 3.5 µm photons, corresponding to the C–H stretch absorption, and reached a lateral resolution of 0.2 µm, well below the λ/2 (λ= wavelength) limit of classical microscopy.  相似文献   

2.
We have developed a novel light source for use in a scanning near‐field optical microscope (SNOM or NSOM) based on a nanopipette whose distance from the sample surface is controlled using scanning ion conductance microscopy. The light source is based on the general principle of the chemical reaction between a fluorophore in the pipette and ligand in the bath, to produce a highly fluorescent complex that is continually renewed at the pipette tip. In these experiments we used fluo‐3 and calcium, respectively. This complex is then excited with an Ar+ laser, focused on the pipette tip, to produce the light source. This method overcomes the transmission problem of more traditional SNOM probes and has been used to acquire simultaneous high‐resolution topographic and optical images of biological samples in physiological buffer. A resolution of ~220 nm topographic and ~190 nm optical was determined through imaging fixed sea‐urchin sperm flagella. Live A6 cells were also imaged, demonstrating the potential of this system for SNOM imaging of living cells.  相似文献   

3.
We present high-resolution aperture probes based on non-contact silicon atomic force microscopy (AFM) cantilevers for simultaneous AFM and near-infrared scanning near-field optical microscopy (SNOM). For use in near-field optical microscopy, conventional AFM cantilevers are modified by covering their tip side with an opaque aluminium layer. To fabricate an aperture, this metal layer is opened at the end of the polyhedral probe using focused ion beams (FIB). Here we show that apertures of less than 50 nm can be obtained using this technique, which actually yield a resolution of about 50 nm, corresponding to λ/20 at the wavelength used. To exclude artefacts induced by distance control, we work in constant-height mode. Our attention is particularly focused on the distance dependence of resolution and to the influence of slight cantilever bending on the optical images when scanning at such low scan heights, where first small attractive forces exerted on the cantilever become detectable.  相似文献   

4.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

5.
Local fluorescence probes based on CdSe semiconductor nanocrystals were prepared and tested by recording scanning near‐field optical microscopy (SNOM) images of calibration samples and fluorescence resonance energy transfer SNOM (FRET SNOM) images of acceptor dye molecules inhomogeneously deposited onto a glass substrate. Thousands of nanocrystals contribute to the signal when this probe is used as a local fluorescence source while only tens of those (the most apical) are involved in imaging for the FRET SNOM operation mode. The dip‐coating method used to make the probe enables diminishing the number of active fluorescent nanocrystals easily. Prospects to realize FRET SNOM based on a single fluorescence centre using such an approach are briefly described.  相似文献   

6.
Chang WS  Bauerdick S  Jeong MS 《Ultramicroscopy》2008,108(10):1070-1075
Scanning near-field optical microscopy (SNOM) achieves a resolution beyond the diffraction limit of conventional optical microscopy systems by utilizing subwavelength aperture probe scanning. A problem associated with SNOM is that the light throughput decreases markedly as the aperture diameter decreases. Apertureless scanning near-field optical microscopes obtain a much better resolution by concentrating the light field near the tip apex. However, a far-field illumination by a focused laser beam generates a large background scattering signal. Both disadvantages are overcome using the tip-on-aperture (TOA) approach, as presented in previous works. In this study, a finite difference time domain analysis of the degree of electromagnetic field enhancement is performed to verify the efficiency of TOA probes. For plasmon enhancement, silver is deposited on commercially available cantilevered SNOM tips with 20nm thicknesses. To form the aperture and TOA in the probes, electron beam-induced deposition and focused ion beam machining were applied at the end of the sharpened tip. The results show that cantilevered TOA probes were highly efficient for improvements of the resolution of optical and topological measurement of nanostructures.  相似文献   

7.
The application of confocal laser scanning microscopy (CLSM) to the study of xenobiotic uptake into plant foliage is explored in this paper. Three fluorescent dyes of low molecular weight and contrasting polarities (hydrophilic, moderately lipophilic and lipophilic) were selected to represent foliage‐applied pesticides. These model compounds were applied as droplets to the surfaces of various leaves and/or fruits according to the particular experiment. The transcuticular diffusion behaviour, the compartmentation into epidermal cells and the influence of a surfactant on the uptake of these fluorescent compounds were visualized by CLSM. Distinct differences in diffusion speed across the cuticle and distribution in cell compartments were found between different fluorescent compounds. The presence of a surfactant significantly accelerated the uptake of the moderately lipophilic dye into both thin‐ and thick‐cuticled leaves. The results are discussed in relation to the current knowledge on pesticide uptake and translocation. The advantages and limitations of this technique are highlighted.  相似文献   

8.
A. Naber  H. Kock  H. Fuchs 《Scanning》1996,18(8):567-571
Scanning near-field optical microscopy (SNOM) is used for lithography to avoid the resolution limiting diffraction of conventional optical methods. We have expanded a commercial SNOM for writing even complex structures on the nanometer scale. Scanning near-field optical lithography (SNOL) has been applied to conventional resists to explore its potential and the possible combination with conventional optical lithography (mix and match technique).  相似文献   

9.
A non‐enzymatic, low temperature fluorescence in situ hybridization (LTFISH) procedure was applied to metaphase spreads and interphase cell nuclei. In this context ‘low temperature’ means that the denaturation procedure of the chromosomal target DNA usually applied by heat treatment and chaotropic agents such as formamide was completely omitted so that the complete hybridization reaction took place at 37 °C. For LTFISH, the DNA probe had to be single‐stranded, which was achieved by means of separate thermal denaturation of the DNA probe only. The DNA probe pUC1.77 was used for all LTFISH experiments. The labelling quality (number of binding sites, relative background intensity, relative intensity of major and minor binding sites) was analysed by confocal laser scanning microscopy (CLSM). An optimum in specificity and signal quality was obtained for 15 h hybridization time. For this hybridization condition of LTFISH, the chromosomal morphology was analysed by scanning near‐field optical microscopy (SNOM). The results were compared with the morphology of chromosomes after (a) labelling of all centromeres using the same chemical treatment in the FISH procedure but with the application of target denaturation, and (b) labelling of all centromeres using a standard FISH protocol including thermal denaturation of the DNA probe and the chromosomal target. Depending on the FISH‐procedure applied, SNOM images show substantial differences in the chromosome morphology. After LTFISH the chromosome morphology appeared to be much better preserved than after standard FISH. In contrast, the application of the LTFISH chemical treatment accompanied by heat denaturation had a very destructive influence on chromosomal morphology. The results indicate that, at least for certain DNA probes, specific chromosome labelling can be obtained without the usually applied heat and chemical denaturation of the DNA target, resulting in an apparently well preserved chromatin morphology as visualized by SNOM. LTFISH may be therefore a useful labelling technique whenever the chromosomal morphology had to be preserved after specific labelling of DNA regions. Binding mechanisms of single‐stranded DNA probes to double‐stranded DNA targets are discussed.  相似文献   

10.
In images acquired by confocal laser scanning microscopy (CLSM), regions corresponding to the same concentration of fluorophores in the specimen should be mapped to the same grayscale levels. However, in practice, due to multiple distortion effects, CLSM images of even homogeneous specimen regions suffer from irregular brightness variations, e.g., darkening of image edges and lightening of the center. The effects are yet more pronounced in images of real biological specimens. A spatially varying grayscale map complicates image postprocessing, e.g., in alignment of overlapping regions of two images and in 3D reconstructions, since measures of similarity usually assume a spatially independent grayscale map. We present a fast correction method based on estimating a spatially variable illumination gain, and multiplying acquired CLSM images by the inverse of the estimated gain. The method does not require any special calibration of reference images since the gain estimate is extracted from the CLSM image being corrected itself. The proposed approach exploits two types of morphological filters: the median filter and the upper Lipschitz cover. The presented correction method, tested on images of both artificial (homogeneous fluorescent layer) and real biological specimens, namely sections of a rat embryo and a rat brain, proved to be very fast and yielded a significant visual improvement. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Observation of magnetic domains with in-plane magnetisations is demonstrated by scanning near-field optical microscopy (SNOM) in reflection mode. The longitudinal and transverse magneto-optical Kerr effects are employed as the contrast mechanisms; these are observed as either a change in the polarisation of the reflected light or reflectance, depending on magnetisation direction. SNOM images of Co and Ni thin films show magneto-optical contrast depending on polarisation of the incident and detected light. For the smooth cobalt thin films, the orientation for magnetic domains is estimated, based on the correlation between the contrasts in SNOM images obtained in different polarisation configurations and the directions of the magnetic vectors of the incident and reflected light. For the nickel films with pronounced topographic structures, the resulting near-field polarisation dependencies are more complicated, suggesting that the magneto-optical contrast in SNOM images are affected by the topographic cross-talk due to the depolarisation effects on surface topographic features.  相似文献   

12.
In this study we have employed atomic force microscopy (AFM) and scanning near‐field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker β4 integrin, which revealed an increase of β4 integrin segregation in the cell membrane of 50‐Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.  相似文献   

13.
We demonstrate fluorescence imaging of single molecules, by near-field scanning optical microscopy (NSOM), using the illumination-collection mode of operation, with an aperture probe. Fluorescence images of single dye molecules were obtained with a spatial resolution of 15 nm, which is smaller than the diameter of the aperture (20 nm) of the probe employed. Such super-resolution may be attributable to non-radiative energy transfer from the molecules to the coated metal of the probe since the resolution obtained in the case of conventional NSOM is limited to 30–50 nm due to penetration of light into the metal.  相似文献   

14.
High-resolution near-field scanning optical microscopy (NSOM) fluorescence and topographic images of l -α-dipalmitoylphosphatidylcholine (DPPC) monolayers doped with a fluorescent dye are presented. DPPC monolayers are deposited onto mica substrates from the air–water interface at several surface pressures using the Langmuir–Blodgett technique. Sub-diffraction limit phase domain structures are observed in both fluorescence and topographic NSOM images of the lipid films. The morphology of the resulting monolayers depends strongly on the surface pressure and composition of the subphase used in the film transfer. Mechanisms for lipid domain formation and growth are discussed.  相似文献   

15.
Resilin is a rubber-like protein found in the exoskeleton of arthropods. It often contributes large proportions to the material of certain structures in movement systems. Accordingly, the knowledge of the presence and distribution of resilin is essential for the understanding of the functional morphology of these systems. Because of its specific autofluorescence, resilin can be effectively visualized using fluorescence microscopy. However, the respective excitation maximum is in the UV range, which is not covered by the lasers available in most of the modern commercial confocal laser scanning microscopes. The goal of this study was to test the potential of confocal laser scanning microscopy (CLSM) in combination with a 405 nm laser to visualize and analyse the presence and distribution of resilin in arthropod exoskeletons. The results clearly show that all resilin-dominated structures, which were visualized successfully using wide-field fluorescence microscopy (WFM) and a 'classical' UV excitation, could also be visualized efficiently with the proposed CLSM method. Furthermore, with the application of additional laser lines CLSM turned out to be very appropriate for studying differences in the material composition within arthropod exoskeletons in great detail. As CLSM has several advantages over WFM with respect to detailed morphological imaging, the application of the proposed CLSM method may reveal new information about the micromorphology and material composition of resilin-dominated exoskeleton structures leading to new insights into the functional morphology and biomechanics of arthropods.  相似文献   

16.
The geometry of glass knife edges for ultramicrotomy was studied with nanoscale resolution using scanning force microscopy (SFM) in the contact mode. The local shape of the cutting edge was estimated from single line profiles of the SFM topographic images by taking into account the exact radius of the ultrasharp silicon tip. The tip radius was estimated from secondary electron micrographs recorded at low voltage by field emission scanning electron microscopy (FESEM). The radius of the investigated cutting edges was found to be in range 5–20 nm. The results obtained illustrate that the combination of SFM and high resolution FESEM provides a unique means to determine precisely the radius of glass knives.  相似文献   

17.
Fluorescence resonance energy transfer (FRET) between excited fluorescent donor and acceptor molecules occurs via the Förster mechanism over a range of 1–10 nm. Because of the strong (sixth power) distance dependence of the signal, FRET has been used to assess the proximity of molecules in biological systems. We used a scanning near-field optical microscope (SNOM) operated in the shared-aperture mode using uncoated glass fibre tips to detect FRET between dye molecules embedded in polyvinyl alcohol films and bound to cell surfaces. FRET was detected by selective photobleaching of donor and acceptor fluorophores. We also present preliminary results on pixel-by-pixel energy transfer efficiency measurements using SNOM.  相似文献   

18.
The aim of this study was to evaluate the penetration of endodontic sealer into the dentin tubules, the integrity of the sealer layer perimeter, and the sealer area at the apical third after different filling techniques by confocal laser scanning microscopy (CLSM). Forty‐five mandibular premolars were mechanically prepared with ProTaper files, until F5 file. Thereafter, they were filled with an epoxy‐resin sealer (AH Plus) mixed with Rhodamine B dye (0.1% proportion) and allocated in three groups: Group 1, single master cone; Group 2, cold lateral compaction; and Group 3, Thermafil. For confocal laser scanning microscopy analysis, the specimens were transversely sectioned at 4 mm from the apex. The images at ×10 and ×40 were analyzed by Imagetool 3.0 software. Significant differences were not found among the three experimental groups according the dentin‐impregnate area by the sealer (P = 0.68) and between the sealer and root canal perimeter (P = 0.18). However, root canal filling techniques were significantly different when apical sealer areas were compared (P = 0.001). Thermafil group showed smaller sealer areas (8.09%) while cold lateral compaction and gutta‐percha master cone showed similar areas (17.37 and 21.18%, respectively). The dentin‐impregnated area was not dependent on the root canal filling technique. Single master cone, cold lateral condensation and Thermafil techniques presented integrity of the sealer perimeter close to 100% and Thermafil resulted in a significantly thinner sealer layer. Microsc. Res. Tech. 75:1277–1280, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10−5.  相似文献   

20.
A consortium of microorganisms with the capacity to degrade crude oil has been characterized by means of confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The analysis using CLSM shows that Microcoleus chthonoplastes is the dominant organism in the consortium. This cyanobacterium forms long filaments that group together in bundles inside a mucopolysaccharide sheath. Scanning electron microscopy and transmission electron microscopy have allowed us to demonstrate that this cyanobacterium forms a consortium primarily with three morphotypes of the heterotrophic microorganisms found in the Microcoleus chthonoplastes sheath. The optimal growth of Microcoleus consortium was obtained in presence of light and crude oil, and under anaerobic conditions. When grown in agar plate, only one type of colony (green and filamentous) was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号