首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
对天然气吸附床在绝热条件下进行了脱附过程的传热实验,实验测量了吸附床在脱附过程中温度分布与变化,实验结果表明吸附床的温度随放气量的增加不断降低,数值达-35℃左右,而且温度分布极不均匀,相差达到40℃。实验发现吸附床中气体渗透对温度分布与变化有较大影响,较低的温度也严重降低了天然气的释放,从而降低了有效天然气吸附量。本文实验数据为采取强化吸附床的传热与传质技术和控制吸附床的温度提供参考。  相似文献   

2.
固体吸附式制冷系统中吸附床内传热过程的数值模拟   总被引:4,自引:0,他引:4  
通过对固体吸附床的模拟来优选吸附床的型式,建立了非稳态,有内热源的模型,分别对螺旋管外换热式吸附床和内热换热式吸附床进行模型,考虑到多微孔物质的传质和传热阻力在的情况,又建立了翅片换热式吸附床和肋片换热式吸附床的传热传质模型,通过分析13X-H2O工质对在中附床内的脱附速率等参数,优选出较为适宜的吸附床模型,并在优选得到的模型上模拟自制吸际剂的脱附特性及床层温度分布,结果表明,增加翅片或肋片能增强床层的传热效果,其中增加肋片效果更显著。的数学模型及计算结果及吸附床设计和应用及商业化提供了理论依据。  相似文献   

3.
为考察吸附床内不同管数和管径对传热的影响,分别设定吸附床的换热面积或填充量为定值,改变传热管的直径及管数,建立了吸附床三维几何模型,利用FLUENT软件进行数值模拟计算,得到吸附床温度场变化规律.结果表明:当吸附床换热面积或填充量一定时,随着换热管数目增多,直径减小,同一时刻吸附床轴向和径向各点温度上升更快,分布更均匀,强化了传热;质量流量对床层温度没有大的影响;并对原吸附床结构进行改进,由原来的5根Ф32×3 mm的传热管和12根Ф10×1mm传质管改为Ф10×1 mm的50根传热管和23根传质管,其填充量变化不大,但换热面积却由0.58 m2增加为1.11 m2,床层温度分布更均匀,强化了传热,缩短了循环周期.  相似文献   

4.
采用均匀压力场模型对太阳能驱动的固体吸附式转轮制冷系统中吸附床的传热传质过程建立了数学模型,并通过数值模拟的方法,分析了吸附床的内部特性参数的改变对系统性能系数(COP)及吸附床平均脱附率等参数的影响。结果表明,固体吸附式转轮制冷系统的COP值随着转轮吸附床的导热系数及吸附剂的堆积密度的增加而显著的增加,而随着吸附床的转速及吸附剂厚度的增加先增加后减小。  相似文献   

5.
研究了活性炭吸附脱除高压聚乙烯装置返回气中的丙醛,考察了温度和原料气流速对脱醛率的影响和活性炭吸附丙醛的吸附穿透曲线,同时比较了活性炭在不同脱附方法脱附后再吸附丙醛的情况。实验结果表明,温度对活性炭的脱醛率有影响,30℃时脱醛率最高;在原料气流速为30mL/min时,丙醛的脱除率为70%~90%;活性炭吸附570min后,丙醛的脱除率下降到30%左右;采用120℃水蒸气脱附法,活性炭三次吸附的脱醛率都在95%以上,好于加热氮气吹扫脱附法和加热抽真空脱附法。  相似文献   

6.
车用吸附存储天然气脱附过程产生的吸热效应,严重影响天然气脱附效率及汽车行驶速度.采用发动机冷却水来加热储气罐,并通过建立该脱附过程的数值模型,模拟计算了脱附过程中温度、压力、脱附量等参数的变化,论证了发动机冷却水用于补充脱附过程所需热量的可行性.结果表明:在脱附放气过程中,用发动机冷却水加热储罐壁面,可以提高储罐的平均...  相似文献   

7.
以DA-1,DA-2和D8三种商业树脂为吸附剂,考察了高分子树脂对典型油气废气正己烷的 吸附-脱附性能.研究表明:在吸附实验中,高分子树脂对正己烷均表现出良好的吸附性能,其中 DA-1和DA-2树脂具有大孔容、大比表面积和较小的孔径等特点,更有利于正己烷分子吸附;脱附 实验中,真空脱附效果优于热脱附,在脱附温度达90℃,脱附时间30min,真空度为0.8时,脱附效 率接近100%.  相似文献   

8.
将芦竹与环氧氯丙烷、乙二胺、三乙胺反应,合成出一种新型吸附剂。研究了改性芦竹对磷酸根的动态吸附及脱附再生效果,分别考察了在动态吸附、脱附再生过程中各种因素的影响。实验结果表明:与改性前相比,芦竹的吸附性能有了很大提高。随着KH2PO4溶液质量浓度的增加,改性芦竹吸附磷酸根至饱和的时间缩短,动态吸附的穿透点提前;随着KH2PO4溶液流速增大,改性芦竹对磷酸根的去除率降低;在pH为5.0时,吸附效果最好;脱附再生实验中,分别选用0.01mol/LNaCl溶液、HCl溶液和NaOH溶液做脱附剂进行脱附可以得到较好的脱附效果。  相似文献   

9.
为探究适合描述活性炭吸附CO2的数学模型和蒸汽吹扫再生CO2的固体吸附工艺,使用Aspen Adsorption模拟固定床动态吸附烟气中CO2的过程.模拟与实验的穿透曲线的对比表明,与采用纯组分吸附、Particle MB传质模型得到的模拟结果相比,采用理想吸附-线性阻力模型(IAS-LDF组合模型)得到的模拟结果与实验数据的一致性更高.建立完整变温吸附模型,使用高温蒸汽和吸附后烟气分别加热和冷却再生床,分析吹扫温度、吸附/脱附时间对CO2捕集率、产品纯度和分离能耗的影响.结果表明,提高吹扫温度能够较大地提升捕集率,并且需要增加的能耗较少,但是对产品纯度的提升较小.当吸附/脱附时间为2~4 min时,吹扫温度从100℃升到200℃,捕集率平均提高了11.1%,能耗提升了13.9%,产品纯度仅平均提高了1.7%.提高吸附/脱附时间能够显著提升产品纯度,但是会降低捕集率和增加较多的能耗.在100~200℃吹扫温度下,吸附/脱附时间从2 min增加到4 min,产品纯度平均提升了13.6%,CO2捕集率平均下降了4.8%,能耗提升了43.1%.  相似文献   

10.
针对吸附材料在太阳能吸附式制冷系统中的应用,利用称重法在高温真空环境下对水的脱附性能进行了实验研究,探究不同温度、压力对SAPO-34沸石分子筛脱附性能的影响.结果表明:温度对材料脱附性能的影响要远大于压力的影响,这在吸附式制冷系统中是非常有利的;当压力一定时,材料的脱附完善度随温度的升高而增大,且不随温度变化均匀分布.温度过高会影响SAPO-34的性能及影响材料的使用寿命;当温度一定时,材料的脱附完善度随着压力的降低而增大,其变化随压力变化分布得较为均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号