首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对伏牛山高硫铜锌矿石进行工艺矿物学和选矿工艺研究,研究表明,采用优先选铜—锌硫混合浮选再分离及铜锌硫依次优先浮选工艺可较好地回收矿石中的铜锌硫,优先选铜—锌硫混合浮选再分离流程得到含铜27.17%、铜回收率86.27%的铜精矿,含锌50.53%、锌回收率88.11%的锌精矿,含硫42.34%、硫回收率78.23%的硫精矿。选矿厂按此流程改造后,可产出含锌42.19%、锌回收率59.30%的锌精矿。  相似文献   

2.
某铜锌硫多金属矿选矿试验研究   总被引:2,自引:1,他引:1  
某铜锌矿石含铜2.86%、锌1.30%、硫29.15%、金1.00g/t、银39.16g/t,试验研究表明,在磨矿细度-74μm占80%的条件下,采用部分混合—优先浮选流程粗选,混合粗精矿再磨后进行铜、锌分离浮选,最终可获得含铜25.91%、回收率为85.23%的铜精矿,含锌32.14%、回收率为83.40%的锌精矿,含硫50.98%、回收率为82.21%的硫精矿。  相似文献   

3.
针对某复杂嵌布的高硫低钼铜多金属矿石进行了综合回收试验研究。在原矿入选品位含Cu 0.57%、含Mo 0.019%、含S 8.48%的条件下,采用铜钼混合浮选—粗精矿再磨精选—铜钼分离浮选—混浮尾矿选硫的工艺流程,获得了铜精矿含铜品位18.06%、铜回收率78.88%,钼精矿含钼品位45.98%、钼回收率60.22%,以及硫精矿含硫品位46.86%、硫回收率88.35%的选别指标,实现了铜钼硫多种资源的综合回收。  相似文献   

4.
《矿冶》2015,(Z1)
某矿石中铜、钼、硫含量分别0.35%、0.011%、2.38%,属于低品位铜钼硫多金属矿。矿石中矿物种类多,嵌布关系复杂,铜、硫可浮性相近,有效回收利用该矿石较为困难。通过流程方案对比,采用选择性捕收剂BK322,通过钼铜等可浮—铜硫混合浮选工艺流程,闭路试验获得了含铜24.79%、含铜0.76%、铜回收率79.61%、钼回收率72.74%的铜钼混合精矿,含铜13.40%、铜回收率7.62%的铜精矿,以及含硫45.79%、硫回收率72.88%的硫精矿;混合精矿经铜钼分离,最终获得含钼46.12%、钼回收率65.12%的钼精矿;综合铜精矿铜品位23.36%、铜回收率87.20%。  相似文献   

5.
国外某低品位含金硫化铜矿石含铜0.36%、金0.08 g/t,针对该金、铜矿物嵌布粒度细,且主要与黄铁矿致密共生的性质特点,采用了"全硫混浮—混合粗精矿再磨—铜硫分离"的选矿工艺流程。闭路试验获得铜精矿含铜24.65%、含金4.21 g/t,铜回收率为90.19%、金回收率为68.24%,以及硫精矿含硫45.97%、硫回收率68.96%的良好试验指标,实现了铜、金资源的高效回收。   相似文献   

6.
江苏某矿山矿石中含有低品位的铜和硫,通过采用混合药剂,铜硫混合粗选-铜硫分离闭路流程选别,获得了含铜12.16%、回收率62.81%的铜精矿及含硫品位27.98%、回收率56.62%的硫精矿。  相似文献   

7.
对高硫铜锌矿采用粗磨后混合浮选流程,该流程具有回收率高、成本低的优势,但混合粗精矿的铜-锌-硫分离一直是金属选矿的重点和难点。针对云南思茅地区高硫铜锌矿,含Cu 3.03%、Zn 3.90%、S 27.44%,采用"全混浮—再磨脱硫—铜锌分离"工艺,研究了再磨细度、药剂用量等因素对混合浮选和铜-锌-硫分离的影响。混合浮选抛尾量为37.61%,混合粗精矿Cu回收率96.34%,Zn回收率98.37%,S回收率98.87%。当粗精矿再磨细度-38μm占90%时脱硫,获得硫铁精矿含S 45.74%,S回收率74.43%;铜锌分离闭路试验获得的铜精矿含Cu 24.01%,Cu回收率86.76%;锌精矿含Zn 52.30%,Zn回收率87.12%。结果表明对高硫铜锌矿采用全混浮—再磨脱硫—铜锌分离工艺可实现各矿物较彻底分离。  相似文献   

8.
针对西藏某低品位铜矿石进行了浮选试验研究,采用铜硫混合浮选-混合精矿再磨-铜硫分离工艺流程,获得了铜精矿含铜23.39%、回收率82.17%,硫精矿含硫36.58%、回收率61.97%。  相似文献   

9.
对秘鲁某铁多金属矿含Cu 0.127%、Au 0.08 g/t、S 2.08%、Fe 40.56%的深部矿石进行了选矿工艺试验研究。该矿原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,根据矿石性质,采用铜硫等可浮—硫浮选—磁选和铜硫等可浮—磁选—铁精矿浮选脱硫两种原则工艺流程进行试验研究,铜硫等可浮分选时,采用选择性的铜捕收剂BK306在无碱条件下将铜和部分易浮硫化物浮出,然后进行铜硫分离回收铜、金;最后通过磁选从浮选尾矿中回收铁。通过铜硫等可浮(粗精矿再磨精选分离)—硫强化浮选—磁选和铜硫等可浮(粗精矿再磨精选分离)—磁选—铁精矿强化浮选脱硫两种试验方案的工艺流程和闭路试验指标的对比分析,最终确定了铜硫等可浮(粗精矿再磨精选分离)—磁选—铁精矿强化浮选脱硫的工艺流程,闭路试验获得含铜19.68%、含金8.26 g/t、铜回收率73.19%、金回收率41.83%的铜精矿,含硫35.58%、硫回收率26.02%的硫精矿,以及含铁69.23%、含硫0.16%、铁回收率91.40%的铁精矿。该工艺既可实现...  相似文献   

10.
铁多金属矿综合回收铁铜硫选矿工艺研究   总被引:2,自引:0,他引:2  
铁多金属矿含铁47.79%、含铜0.066%、含硫2.05%, 通过“弱磁粗选-再磨-浮选脱硫-弱磁精选”流程选铁、“铜硫混浮-脱泥脱药-再磨-铜硫分离”流程回收铜和硫, 在一段磨矿-0.075 mm粒级占50%, 铁粗精矿、铜硫粗精矿再磨-0.075 mm粒级含量均为80%条件下, 可获得铁精矿铁品位66.63%、含硫0.069%、含铜0.0072%、铁回收率为92.41%, 铜精矿铜品位20.25%、含铁26.84%、含硫27.80%、铜回收率为52.16%, 硫精矿含硫44.00%、含铁43.04%、含铜0.15%、硫回收率为78.72%, 实现了铁、铜和硫的综合回收。  相似文献   

11.
江西某铜银多金属矿选矿工艺   总被引:2,自引:2,他引:0  
根据江西某铜银多金属矿石的特点,采用铜硫混合浮选—铜硫混合精矿再磨—混合精矿铜硫分离的工艺流程,以及组合铜硫捕收剂丁基铵黑药+丁基黄药,新型高效抑制剂DT-2#综合回收铜、硫、银等有价元素。闭路试验获得了含铜22.49%、铜回收率88.76%的铜精矿,含硫33.07%、硫回收率62.25%的硫精矿。银回收率88.16%,主要富集在铜精矿中,综合品位达到1 595.47 g/t。  相似文献   

12.
云南某铜硫矿铜品位较低,含铜矿物嵌布粒度不均匀,且与主要的含硫矿物磁黄铁矿共生关系密切,脉石矿物复杂,因此,本文对该矿进行了详细的工艺矿物学及选矿试验研究。根据矿石特点,分别进行了铜硫等可浮与铜优先浮选工艺流程对比试验研究。采用铜硫等可浮-铜硫分离浮选工艺流程最终实验室闭路试验结果为铜精矿含铜18.97%,铜回收率81.08%;硫精矿含硫37.71%,硫回收率26.09%。采用铜优先浮选工艺流程最终实验室闭路试验结果为铜精矿含铜20.12%,铜回收率82.15%;硫精矿含硫37.41%,硫回收率84.48%。  相似文献   

13.
对四川汉源地区某高硫型低品位铜铅多金属硫化矿进行了浮选分离试验研究。采用混合浮选得到铜铅混合精矿, 铜铅混合精矿经铜铅分离, 分别得到铜品位18.72%、含铅0.66%、含硫22.03%、铜回收率87.12%的铜精矿和铅品位59.66%、含铜0.58%、含硫14.89%、铅回收率85.72%的铅精矿; 铜铅混合浮选尾矿再浮选可进一步得到硫品位48.73%、含铜0.05%、含铅0.22%、硫回收率87.93%的硫精矿, 实现了该低品位多金属硫化矿中有价金属的综合回收。  相似文献   

14.
在对某低品位难选斑岩型铜钼矿进行矿石性质研究的基础上,采用铜钼(硫)混合浮选-混合精矿脱硫精选-钼铜分离的工艺流程,闭路试验可获得含钼43.62%、钼回收率70.41%的钼精矿、含铜24.25%、铜回收率87.14%的铜精矿以及含硫39.30%、硫回收率79.08%的硫精矿。该试验研究结果可以作为开发利用该铜钼矿的技术依据。  相似文献   

15.
对高硫铜锌矿采用粗磨后混合浮选具有回收率高成本低的优势,但混合粗精矿的铜-锌-硫分离一直是金属选矿重点和难点。本文针对云南思茅地区高硫铜锌矿,含Cu3.03%、Zn3 .90%、S 27.44%,采用“混合浮选-再磨脱硫-铜锌分离”工艺,研究了再磨细度、药剂用量等因素对混合浮选和铜-锌-硫分离的影响。混合浮选抛尾量为37.61%,混合粗精矿Cu回收率96.34%,Zn回收率98.37%,S回收率98.87%。当粗精矿再磨细度-38μm 90%时脱硫,获得硫铁精矿含S 45.74%,S回收率74.43%,铜锌分离闭路试验获得铜精矿含Cu 24.01%,Cu回收率86.76%,锌精矿含Zn52.30%,Zn回收率87.12%。表明对高硫铜锌矿采用 “混合浮选-再磨脱硫-铜锌分离”工艺可实现各矿物较彻底分离。  相似文献   

16.
某硫化铜矿含铜1.03%,含硫8.12%,铜矿物嵌布粒度较细,且存在大量易泥化脉石矿物,难以获得理想的选矿指标。以Z-200为捕收剂,BK204为起泡剂,采用“铜硫混选—铜硫分离”工艺流程,闭路试验可获得铜精矿含铜23.70%,铜回收率87.17%,硫精矿含硫41.34%,硫回收率60.88%,取得了较好的浮选指标,实现了资源的有效利用。  相似文献   

17.
某含泥高硫混合铜矿选矿试验研究   总被引:1,自引:0,他引:1  
张辉  刘全军  袁华玮  张一超 《矿冶》2016,25(2):28-30
该矿石含泥量较高,黄铜矿与黄铁矿致密共生,原矿铜品位为0.99%,硫品位为18.32%。试验采用原矿洗矿—铜硫混合浮选—混合精矿再磨分离的原则流程。磨矿至-0.074 mm粒级含量占56%进行铜硫混选,混合精矿再磨矿至-0.074 mm粒级含量占90%进行铜硫分离。通过考察药剂制度对浮选的影响采用硫化钠400 g/t,丁基黄药∶丁基铵黑药(4∶1)80 g/t,松醇油35 g/t,石灰为1500 g/t,获得品位为15.95%、回收率为88.23%的铜精矿和品位为32.13%、回收率为69.84%的硫精矿。对同类别含泥高硫混合铜矿选矿具有一定指导意义。  相似文献   

18.
新疆某高硫铜锌矿选矿试验   总被引:1,自引:0,他引:1  
针对新疆某高硫铜锌矿石的性质特点,采用铜锌混合浮选—混合粗精矿再磨—铜锌分离—铜锌混浮尾矿选硫的原则流程对该矿石进行了选矿试验研究。研究表明,铜锌混合浮选和铜锌混合粗精矿再磨适宜的磨矿产品细度分别为-0.074 mm占90%和-0.043 mm占95%;J102和丁基黄药为铜锌混合浮选的有效捕收剂;T-21与硫酸锌组合对闪锌矿具有较强的抑制作用;J102对铜矿物的选择性捕收可以较好地实现铜锌分离。采用试验确定的闭路流程处理该矿石,可获得铜品位为20.09%、铜回收率为86.46%的铜精矿,锌品位为52.48%、锌回收率为67.35%的锌精矿,硫品位为45.95%、硫回收率为74.09%的硫精矿。  相似文献   

19.
某铜硫混合精矿含铜2.58%、硫40.22%,一直以来都使用大量石灰进行铜硫分离,存在石灰结垢堵塞管道、泡沫发黏等问题。采用新型抑制剂BK506替代石灰,具有用量小,效果好等特点,采用一次粗选、三次精选和两次扫选流程,获得的闭路试验指标为:铜精矿含Cu22.83%,Cu回收率89.53%;硫精矿含S40.82%,S回收率91.23%。该方案在低碱度条件下很好地实现了铜硫分离。  相似文献   

20.
为从铜山深部矿石含铜硫化矿中分选铜,在系统的工艺矿物学研究和选矿工艺研究的基础上,确定采用铜硫混浮—铜硫分离—中矿再磨再选—尾矿磁选选铁工艺流程,最终获得了铜品位为15.50%、含硫34.17%、含铁33.16%、铜回收率为86.90%的铜精矿,硫品位为41.27%、含铜0.236%、含铁39.63%、硫回收率为74.68%的硫精矿;铁品位为63.22%、含铜0.042%、含硫0.60%、铁回收率为38.48%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号