首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
聚丙烯增韧改性技术综述   总被引:1,自引:0,他引:1  
目的 增加聚丙烯的韧性 ,扩大其应用 .方法 探讨聚丙烯改性机理 ,分析讨论影响聚丙烯改性的因素 .结果 共混体系的结构形态、相容性、组成和共混工艺等影响聚丙烯的改性 .结论 适宜的改性技术是聚丙烯改性的关键  相似文献   

2.
目的:增加聚丙烯的韧性,扩大其应用。方法:探讨聚丙烯改性机理,分析讨论影响聚丙烯改性的因素。结果:共混体系的结构形态,相容性,组成和共混工艺等影响聚丙烯的改性。结论:适宜的改性技术是聚丙烯改性的关键。  相似文献   

3.
应用SEM和力学性能测试研究了EVA-15对聚丙烯共混物原料配比、工艺条件和微观结构形态对材料性能的影响,对共混物的增韧机理进行了分析。研究结果表明:EVA-15对聚丙烯有很好的增韧改性效果,其综合性能优良.这一研究为拓宽聚丙烯改性材料的应用提供了一种新的方法,符合当今高聚物增韧发展的趋势.  相似文献   

4.
应用SEM和力学性能测试研究了EVA-15对聚丙烯共混物原料配比、工艺条件和微观结构形态对材料性能的影响,对共混物的增韧机理进行了分析。研究结果表明:EVA-15对聚丙烯有很好的增韧改性效果,其综合性能优良.这一研究为拓宽聚丙烯改性材料的应用提供了一种新的方法,符合当今高聚物增韧发展的趋势.  相似文献   

5.
通过用共混聚氨酯对聚丙烯纤维改性的实验研究,制备出适用于共混两组分的相容剂为聚丙烯/聚氨酯的接枝物(PP-g-PU),并通过红外光谱(FTIR)分析,确定了共混组分的比例对聚丙烯纤维的增强改性效果:当聚氨酯(PU)加入量(质量比例)为4%时,共混聚丙烯(PP)纤维的流变性、可纺性、断裂强度最好。  相似文献   

6.
通过用共混聚氨酯对聚丙烯纤维改性的实验研究,制备出适用于共混两组分的相容剂为聚丙烯/聚氨酯的接枝物(PP g PU),并通过红外光谱(FTIR)分析,确定了共混组分的比例对聚丙烯纤维的增强改性效果:当聚氨酯(PU)加入量(质量比例)为4%时,共混聚丙烯(PP)纤维的流变性、可纺性、断裂强度最好。  相似文献   

7.
将RSM-1和E与聚丙烯共混,制得分散染料可染改性聚丙烯纤维。讲座了共混物组分和组成对共混纤维染色性能的影响,结果表明,RSM-1和E对提高高改性聚丙烯纤维的染色性均有明显效果。  相似文献   

8.
介绍了聚丙烯材料的老化原因,阐述了聚丙烯材料的改性方法,比如接枝改性、熔融共混改性等。  相似文献   

9.
改性聚丙烯纤维的染色性   总被引:3,自引:0,他引:3  
将RSM-1和E与聚丙烯共混,制得分散染料可染改性聚丙烯纤维.讨论了共混物组分和组成对共混纤维染色性能的影响.结果表明,RSM-1和E对提高改性聚丙烯纤维的染色性均有明显效果.  相似文献   

10.
橡胶增韧滑石粉填充聚丙烯塑料改性的研究   总被引:1,自引:0,他引:1  
从聚丙烯的增强增韧性性出发,用改性后的聚丙烯在某些应用领域代替ABS工程塑料。研究方法是将聚丙烯同经偶联剂处理的滑石粉以及橡胶进行共混。  相似文献   

11.
橡胶增韧滑石粉填充聚丙烯塑料改性的研究   总被引:1,自引:0,他引:1  
从聚丙烯的增强增韧改性出发,使改性后的聚丙烯在某些使用领域代替ABS工程塑料.研究方法是将聚丙烯同偶联剂处理的滑石粉以及橡胶进行共混.通过对共混物进行多方面的功能测试,结果表明,日本产的EPT-4045增韧效果好,且当PP:滑石粉:EPT的重量比为70:20:10时,共混物的性能最佳,可与通用ABS相比.同时,本试验来用的偶联剂对共混体系的流动性有显著的改善作用.  相似文献   

12.
提高聚丙烯透明性的研究   总被引:1,自引:0,他引:1  
聚丙烯虽然机械性能较好,但是由于透明性不好,使它在包装、日用品、医疗器械等领域的应用受到限制。为了拓展聚丙烯的应用领域,满足市场对透明聚苯乙烯的需求,对聚丙烯进行了透明改性的研究。选用合适的聚丙烯基料,加入合适的透明剂和分散剂,对聚丙烯进行共混改性提高其透明度。经过对比实验,挑选出最优的基础树脂料、透明剂和分散剂,研究和生产出高透明的聚丙烯专用料。以PPR作为聚丙烯透明改性的基础树脂,选择美国产的透明剂,透明剂最佳质量分数为0.31%;加入分散剂的质量分数为0.2%;测试样品厚度为0.5 mm,同时保持压片时的保压稳定性,开发和生产出了与国外相当的透明聚丙烯专用料。  相似文献   

13.
研究了废旧聚丙烯塑料的共混工艺、增强增韧改性及共混物的流动性能.以废旧聚丙烯塑料为研究对象,加入无机填料碳酸钙,增韧剂乙烯-辛烯共聚物及适量相容剂马来酸酐接枝聚丙烯对其进行增强增韧改性,通过熔融共混法制备了聚丙烯/碳酸钙、聚丙烯/碳酸钙/乙烯-辛烯共聚物两种复合材料.结果表明:碳酸钙和乙烯-辛烯共聚物对废旧聚丙烯塑料均有良好的的增韧效果,马来酸酐接枝聚丙烯作为聚丙烯/碳酸钙复合体系的界面改性剂能有效改善分散相碳酸钙在连续相聚丙烯中的分散状态,但乙烯-辛烯共聚物的加入会降低复合材料的拉伸强度,且共混体系的流动性能也有明显的降低趋势.当聚丙烯/碳酸钙/乙烯-辛烯共聚物质量份数比为100/15/10时,两种复合材料的悬臂梁缺口冲击强度均达到最大值,增韧效果最佳,弯曲强度和模量也有一定程度的提高,复合材料表现出良好的综合力学性能.  相似文献   

14.
通过铝酸酯偶联剂对硅藻土进行改性,以不同含量的硅藻土与聚丙烯熔融共混,制备出硅藻土/聚丙烯复合材料。对比研究了铝酸酯偶联剂与硅烷偶联剂对硅藻土改性效果,观察不同偶联剂及其用量和硅藻土含量对硅藻土/聚丙烯复合材料的组织形貌和拉伸性能影响。结果表明,铝酸酯偶联剂和硅烷偶联剂都有改性效果,且铝酸酯偶联剂的改性效果明显优于硅烷偶联剂,当铝酸酯偶联剂用量为1%时,与硅烷改性复合材料相比延伸率提高了121.60%,断裂强度提高了64.05%。  相似文献   

15.
PEG、EVA、WSPET改性丙纶流变行为的研究   总被引:2,自引:2,他引:2  
为提高聚丙烯(PP)纤维的吸湿性,采用共混法制备了聚乙二醇(PEG)、乙烯-醋酸乙烯酯共聚物(EVA)、水溶性聚酯(WSPET)改性丙纶。研究了PEG、EVA、WSPET共混改性丙纶的流变行为。研究发现共混PEG使改性丙纶表观粘度下降,但挤出涨大现象变大;随EVA加入量的增加,改性丙纶的表观粘度首先下降然后上升;WSPET的加入使改性丙纶的表观粘度下降;在加入量约10%时,3种改性剂均使改性丙纶的表观粘度下降,其中以WSPET的影响最显著。  相似文献   

16.
分散染料与阳离子染料可染型聚丙烯纤维的研究   总被引:2,自引:0,他引:2  
由于聚丙烯高度规整的超分子结构,导致聚丙烯纤维无法用常规方法进行染色加工。采用高聚物共混改性方法,成功地研制出可染型聚丙烯树脂。为使可染型聚丙烯树脂工业化生产纤维,对其热性能、流变性能、可纺性能及染色性能进行了研究。结果表明:可染型聚丙烯树脂具有良好的可纺性。  相似文献   

17.
纳米二氧化硅粒子增韧聚丙烯的研究   总被引:14,自引:0,他引:14  
研究了纳米二氧化硅(SiO2)粒子对聚丙烯(PP)的冲击强度和拉伸强度的影响,比较了溶液共混法与聚合法的改性效果差异,并从机理上进行了探讨.研究发现:用溶液共混法制备的纳米SiO2/PP复合材料,其冲击强度在纳米SiO2粒子含量为4%左右时达到最大值,约为未经改性的PP材料的8倍;用纳米SiO2粒子改性的PP材料的拉伸强度与未经改性的PP材料基本一致;在相似的工艺条件下,共混法对PP的增韧效果较聚合法显著.  相似文献   

18.
将β成核剂添加到聚丙烯中,对聚丙烯进行改性,添加比例分别为0.2%、0.5%、0.7%。研究表明,共混体系为非牛顿假塑性流体,其表观黏度随剪切速率的增大而减小;随着β成核剂质量分数增大,共混物非牛顿流动指数下降,剪切速率上升,流变性能改善;共混物黏流活化能随着β成核剂质量分数的增大而增大,黏温依赖性随着β成核剂质量分数的增加而增大。β成核剂改变聚丙烯的结晶形态并且可以增强聚丙烯纤维的韧性,减小断裂伸长率,从而导致共混体系的断裂强度呈现逐渐下降的趋势。  相似文献   

19.
将超支化聚酯应用于聚丙烯纤维的共混改性,研究了超支化聚酯对聚丙烯流变性能的影响。实验结果表明,共混体系为非牛顿假塑性流体,其表观黏度随切速率的增大而减小,随温度升高而降低,随着超支化聚酯质量分数增加而减小。共混体系的非牛顿指数随超支化聚酯质量分数增加而降低,流变性能得到改善。当超支化聚酯为6%时,体系黏流活化能为45.34 kJ/mol。  相似文献   

20.
改性玻璃纤维填充聚丙烯复合材料的制备与力学性能   总被引:1,自引:0,他引:1  
为比较不同改性剂对填充聚丙烯用玻璃纤维表面改性的优劣及改性剂的最佳用量,使用熔融共混法研究了两种硅烷偶联剂、钛酸酯偶联剂以及马来酸酐接枝聚丙烯改性玻璃纤维对玻璃纤维填充聚丙烯复合材料的力学性能的影响.并用扫描电子显微镜观察了几种不同的表面处理对聚丙烯/玻璃纤维复合材料断面形貌影响.结果表明,所使用的几种改性剂都能改善聚丙烯的力学强度和模量.扫描电镜照片显示聚丙烯与玻璃纤维间的界面相互作用的强弱与聚丙烯/玻璃纤维复合材料的力学性能之间有着紧密的关系.此外,力学数据结果表明,使用8% 的马来酸酐接枝聚丙烯相容剂对聚丙烯/玻璃纤维复合材料的增强效果最佳,硅烷偶联剂的效果次于马来酸酐接枝聚丙烯,钛酸酯偶联剂的改性效果最差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号